📄 laguerre.qbk
字号:
[section:laguerre Laguerre (and Associated) Polynomials][h4 Synopsis]``#include <boost/math/special_functions/laguerre.hpp>`` namespace boost{ namespace math{ template <class T> ``__sf_result`` laguerre(unsigned n, T x); template <class T, class ``__Policy``> ``__sf_result`` laguerre(unsigned n, T x, const ``__Policy``&); template <class T> ``__sf_result`` laguerre(unsigned n, unsigned m, T x); template <class T, class ``__Policy``> ``__sf_result`` laguerre(unsigned n, unsigned m, T x, const ``__Policy``&); template <class T1, class T2, class T3> ``__sf_result`` laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1); template <class T1, class T2, class T3> ``__sf_result`` laguerre_next(unsigned n, unsigned m, T1 x, T2 Ln, T3 Lnm1); }} // namespaces [h4 Description]The return type of these functions is computed using the __arg_pomotion_rules:note than when there is a single template argument the result is the same type as that argument or `double` if the template argument is an integer type.[optional_policy] template <class T> ``__sf_result`` laguerre(unsigned n, T x); template <class T, class ``__Policy``> ``__sf_result`` laguerre(unsigned n, T x, const ``__Policy``&); Returns the value of the Laguerre Polynomial of order /n/ at point /x/:[equation laguerre_0]The following graph illustrates the behaviour of the first few Laguerre Polynomials:[graph laguerre] template <class T> ``__sf_result`` laguerre(unsigned n, unsigned m, T x); template <class T, class ``__Policy``> ``__sf_result`` laguerre(unsigned n, unsigned m, T x, const ``__Policy``&); Returns the Associated Laguerre polynomial of degree /n/ and order /m/ at point /x/:[equation laguerre_1] template <class T1, class T2, class T3> ``__sf_result`` laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1); Implements the three term recurrence relation for the Laguerrepolynomials, this function can be used to create a sequence ofvalues evaluated at the same /x/, and for rising /n/.[equation laguerre_2]For example we could produce a vector of the first 10 polynomialvalues using: double x = 0.5; // Abscissa value vector<double> v; v.push_back(laguerre(0, x)).push_back(laguerre(1, x)); for(unsigned l = 1; l < 10; ++l) v.push_back(laguerre_next(l, x, v[l], v[l-1])); Formally the arguments are:[variablelist[[n][The degree /n/ of the last polynomial calculated.]][[x][The abscissa value]][[Ln][The value of the polynomial evaluated at degree /n/.]][[Lnm1][The value of the polynomial evaluated at degree /n-1/.]]] template <class T1, class T2, class T3> ``__sf_result`` laguerre_next(unsigned n, unsigned m, T1 x, T2 Ln, T3 Lnm1);Implements the three term recurrence relation for the Associated Laguerrepolynomials, this function can be used to create a sequence ofvalues evaluated at the same /x/, and for rising degree /n/.[equation laguerre_3]For example we could produce a vector of the first 10 polynomialvalues using: double x = 0.5; // Abscissa value int m = 10; // order vector<double> v; v.push_back(laguerre(0, m, x)).push_back(laguerre(1, m, x)); for(unsigned l = 1; l < 10; ++l) v.push_back(laguerre_next(l, m, x, v[l], v[l-1])); Formally the arguments are:[variablelist[[n][The degree of the last polynomial calculated.]][[m][The order of the Associated Polynomial.]][[x][The abscissa value.]][[Ln][The value of the polynomial evaluated at degree /n/.]][[Lnm1][The value of the polynomial evaluated at degree /n-1/.]]] [h4 Accuracy]The following table shows peak errors (in units of epsilon) for various domains of input arguments. Note that only results for the widest floating point type on the system are given as narrower types have __zero_error.[table Peak Errors In the Laguerre Polynomial[[Significand Size] [Platform and Compiler] [Errors in range0 < l < 20] ][[53] [Win32, Visual C++ 8] [Peak=3000 Mean=185] ][[64] [SUSE Linux IA32, g++ 4.1] [Peak=1x10[super 4] Mean=828]][[64] [Red Hat Linux IA64, g++ 3.4.4] [Peak=1x10[super 4] Mean=828] ][[113] [HPUX IA64, aCC A.06.06] [Peak=680 Mean=40]]][table Peak Errors In the Associated Laguerre Polynomial[[Significand Size] [Platform and Compiler] [Errors in range0 < l < 20] ][[53] [Win32, Visual C++ 8] [Peak=433 Mean=11]][[64] [SUSE Linux IA32, g++ 4.1] [Peak=61.4 Mean=19.5]][[64] [Red Hat Linux IA64, g++ 3.4.4] [Peak=61.4 Mean=19.5] ][[113] [HPUX IA64, aCC A.06.06] [Peak=540 Mean=13.94] ]]Note that the worst errors occur when the degree increases, values greater than~120 are very unlikely to produce sensible results, especially in the associatedpolynomial case when the order is also large. Further the relative errorsare likely to grow arbitrarily large when the function is very close to a root.[h4 Testing]A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data areused: the test data was computed using[@http://shoup.net/ntl/doc/RR.txt NTL::RR] at 1000-bit precision.[h4 Implementation]These functions are implemented using the stable three termrecurrence relations. These relations guarentee low absolute errorbut cannot guarentee low relative error near one of the roots of thepolynomials.[endsect][/section:beta_function The Beta Function][/ Copyright 2006 John Maddock and Paul A. Bristow. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -