📄 tut1.cpp
字号:
//// Boost.Pointer Container//// Copyright Thorsten Ottosen 2003-2005. Use, modification and// distribution is subject to the Boost Software License, Version// 1.0. (See accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)//// For more information, see http://www.boost.org/libs/ptr_container/////// This example is intended to get you started.// Notice how the smart container//// 1. takes ownership of objects// 2. transfers ownership// 3. applies indirection to iterators // 4. clones objects from other smart containers// //// First we select which container to use.//#include <boost/ptr_container/ptr_deque.hpp>//// we need these later in the example//#include <boost/assert.hpp>#include <string>#include <exception>//// Then we define a small polymorphic class// hierarchy.// class animal : boost::noncopyable{ virtual std::string do_speak() const = 0; std::string name_;protected: // // Animals cannot be copied... // animal( const animal& r ) : name_( r.name_ ) { } void operator=( const animal& );private: // // ...but due to advances in genetics, we can clone them! // virtual animal* do_clone() const = 0; public: animal( const std::string& name ) : name_(name) { } virtual ~animal() throw() { } std::string speak() const { return do_speak(); } std::string name() const { return name_; } animal* clone() const { return do_clone(); }};//// An animal is still not Clonable. We need this last hook.//// Notice that we pass the animal by const reference// and return by pointer.//animal* new_clone( const animal& a ){ return a.clone();}//// We do not need to define 'delete_clone()' since// since the default is to call the default 'operator delete()'.//const std::string muuuh = "Muuuh!";const std::string oiink = "Oiiink";class cow : public animal{ virtual std::string do_speak() const { return muuuh; } virtual animal* do_clone() const { return new cow( *this ); }public: cow( const std::string& name ) : animal(name) { }};class pig : public animal{ virtual std::string do_speak() const { return oiink; } virtual animal* do_clone() const { return new pig( *this ); } public: pig( const std::string& name ) : animal(name) { }};//// Then we, of course, need a place to put all// those animals.//class farm{ // // This is where the smart containers are handy // typedef boost::ptr_deque<animal> barn_type; barn_type barn; // // An error type // struct farm_trouble : public std::exception { };public: // // We would like to make it possible to // iterate over the animals in the farm // typedef barn_type::iterator animal_iterator; // // We also need to count the farm's size... // typedef barn_type::size_type size_type; // // And we also want to transfer an animal // safely around. The easiest way to think // about '::auto_type' is to imagine a simplified // 'std::auto_ptr<T>' ... this means you can expect // // T* operator->() // T* release() // deleting destructor // // but not more. // typedef barn_type::auto_type animal_transport; // // Create an empty farm. // farm() { } // // We need a constructor that can make a new // farm by cloning a range of animals. // farm( animal_iterator begin, animal_iterator end ) : // // Objects are always cloned before insertion // unless we explicitly add a pointer or // use 'release()'. Therefore we actually // clone all animals in the range // barn( begin, end ) { } // // ... so we need some other function too // animal_iterator begin() { return barn.begin(); } animal_iterator end() { return barn.end(); } // // Here it is quite ok to have an 'animal*' argument. // The smart container will handle all ownership // issues. // void buy_animal( animal* a ) { barn.push_back( a ); } // // The farm can also be in economical trouble and // therefore be in the need to sell animals. // animal_transport sell_animal( animal_iterator to_sell ) { if( to_sell == end() ) throw farm_trouble(); // // Here we remove the animal from the barn, // but the animal is not deleted yet...it's // up to the buyer to decide what // to do with it. // return barn.release( to_sell ); } // // How big a farm do we have? // size_type size() const { return barn.size(); } // // If things are bad, we might choose to sell all animals :-( // std::auto_ptr<barn_type> sell_farm() { return barn.release(); } // // However, if things are good, we might buy somebody // else's farm :-) // void buy_farm( std::auto_ptr<barn_type> other ) { // // This line inserts all the animals from 'other' // and is guaranteed either to succeed or to have no // effect // barn.transfer( barn.end(), // insert new animals at the end *other ); // we want to transfer all animals, // so we use the whole container as argument // // You might think you would have to do // // other.release(); // // but '*other' is empty and can go out of scope as it wants // BOOST_ASSERT( other->empty() ); } }; // class 'farm'.int main(){ // // First we make a farm // farm animal_farm; BOOST_ASSERT( animal_farm.size() == 0u ); animal_farm.buy_animal( new pig("Betty") ); animal_farm.buy_animal( new pig("Benny") ); animal_farm.buy_animal( new pig("Jeltzin") ); animal_farm.buy_animal( new cow("Hanz") ); animal_farm.buy_animal( new cow("Mary") ); animal_farm.buy_animal( new cow("Frederik") ); BOOST_ASSERT( animal_farm.size() == 6u ); // // Then we make another farm...it will actually contain // a clone of the other farm. // farm new_farm( animal_farm.begin(), animal_farm.end() ); BOOST_ASSERT( new_farm.size() == 6u ); // // Is it really clones in the new farm? // BOOST_ASSERT( new_farm.begin()->name() == "Betty" ); // // Then we search for an animal, Mary (the Crown Princess of Denmark), // because we would like to buy her ... // typedef farm::animal_iterator iterator; iterator to_sell; for( iterator i = animal_farm.begin(), end = animal_farm.end(); i != end; ++i ) { if( i->name() == "Mary" ) { to_sell = i; break; } } farm::animal_transport mary = animal_farm.sell_animal( to_sell ); if( mary->speak() == muuuh ) // // Great, Mary is a cow, and she may live longer // new_farm.buy_animal( mary.release() ); else // // Then the animal would be destroyed (!) // when we go out of scope. // ; // // Now we can observe some changes to the two farms... // BOOST_ASSERT( animal_farm.size() == 5u ); BOOST_ASSERT( new_farm.size() == 7u ); // // The new farm has however underestimated how much // it cost to feed Mary and its owner is forced to sell the farm... // animal_farm.buy_farm( new_farm.sell_farm() ); BOOST_ASSERT( new_farm.size() == 0u ); BOOST_ASSERT( animal_farm.size() == 12u ); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -