📄 tutorial.rst
字号:
++++++++++++++++++++++++++++++++++ |Boost| Pointer Container Library++++++++++++++++++++++++++++++++++ .. |Boost| image:: boost.png======== Tutorial ======== The tutorial shows you the most simple usage of thelibrary. It is assumed that the reader is familiarwith the use of standard containers. Althoughthe tutorial is devided into sections, it is recommendedthat you read it all from top to bottom.* `Basic usage`_* `Indirected interface`_* `Sequence containers`_* `Associative containers`_* `Null values`_* `Cloneability`_* `New functions`_* `std::auto_ptr<U> overloads`_* `Algorithms`_Basic usage-----------The most important aspect of a pointer container is that it managesmemory for you. This means that you in most cases do not need to worryabout deleting memory. Let us assume that we have an OO-hierarchy of animals.. parsed-literal:: class animal : `boost::noncopyable <http://www.boost.org/libs/utility/utility.htm#Class_noncopyable>`_ { public: virtual ~animal() {} virtual void eat() = 0; virtual int age() const = 0; // ... }; class mammal : public animal { // ... }; class bird : public animal { // ... };Then the managing of the animals is straight-forward. Imagine a Zoo:: class zoo { boost::ptr_vector<animal> the_animals; public: void add_animal( animal* a ) { the_animals.push_back( a ); } };Notice how we just pass the class name to the container; thereis no ``*`` to indicate it is a pointer.With this declaration we can now say:: zoo the_zoo; the_zoo.add_animal( new mammal("joe") ); the_zoo.add_animal( new bird("dodo") );Thus we heap-allocate all elements of the containerand never rely on copy-semantics. Indirected interface--------------------A particular feature of the pointer containers is thatthe query interface is indirected. For example, :: boost::ptr_vector<animal> vec; vec.push_back( new animal ); // you add it as pointer ... vec[0].eat(); // but get a reference backThis indirection also happens to iterators, so :: typedef std::vector<animal*> std_vec; std_vec vec; ... std_vec::iterator i = vec.begin(); (*i)->eat(); // '*' needed now becomes :: typedef boost::ptr_vector<animal> ptr_vec; ptr_vec vec; ptr_vec::iterator i = vec.begin(); i->eat(); // no indirection needed Sequence containers-------------------The sequence containers are used when you do not need tokeep an ordering on your elements. You can basicallyexpect all operations of the normal standard containersto be available. So, for example, with a ``ptr_deque``and ``ptr_list`` object you can say:: boost::ptr_deque<animal> deq; deq.push_front( new animal ); deq.pop_front();because ``std::deque`` and ``std::list`` have ``push_front()``and ``pop_front()`` members. If the standard sequence supportsrandom access, so does the pointer container; for example:: for( boost::ptr_deque<animal>::size_type i = 0u; i != deq.size(); ++i ) deq[i].eat();The ``ptr_vector`` also allows you to specify the size ofthe buffer to allocate; for example :: boost::ptr_vector<animal> animals( 10u );will reserve room for 10 animals. Associative containers----------------------To keep an ordering on our animals, we could use a ``ptr_set``:: boost::ptr_set<animal> set; set.insert( new monkey("bobo") ); set.insert( new whale("anna") ); ... This requires that ``operator<()`` is defined for animals. Oneway to do this could be :: inline bool operator<( const animal& l, const animal& r ) { return l.name() < r.name(); } if we wanted to keep the animals sorted by name.Maybe you want to keep all the animals in zoo ordered wrt.their name, but it so happens that many animals have thesame name. We can then use a ``ptr_multimap``:: typedef boost::ptr_multimap<std::string,animal> zoo_type; zoo_type zoo; std::string bobo = "bobo", anna = "anna"; zoo.insert( bobo, new monkey(bobo) ); zoo.insert( bobo, new elephant(bobo) ); zoo.insert( anna, new whale(anna) ); zoo.insert( anna, new emu(anna) ); Note that must create the key as an lvalue (due to exception-safety issues); the following would not have compiled :: zoo.insert( "bobo", // this is bad, but you get compile error new monkey("bobo") );If a multimap is not needed, we can use ``operator[]()``to avoid the clumsiness:: boost::ptr_map<std::string,animal> animals; animals["bobo"].set_name("bobo");This requires a default constructor for animals anda function to do the initialization, in this case ``set_name()``.A better alternative is to use `Boost.Assign <../../assign/index.html>`_to help you out. In particular, consider- `ptr_push_back(), ptr_push_front(), ptr_insert() and ptr_map_insert() <../../assign/doc/index.html#ptr_push_back>`_- `ptr_list_of() <../../assign/doc/index.html#ptr_list_of>`_For example, the above insertion may now be written :: boost::ptr_multimap<std::string,animal> animals; using namespace boost::assign; ptr_map_insert<monkey>( animals )( "bobo", "bobo" ); ptr_map_insert<elephant>( animals )( "bobo", "bobo" ); ptr_map_insert<whale>( animals )( "anna", "anna" ); ptr_map_insert<emu>( animals )( "anna", "anna" ); Null values-----------By default, if you try to insert null into a container, an exceptionis thrown. If you want to allow nulls, then you mustsay so explicitly when declaring the container variable :: boost::ptr_vector< boost::nullable<animal> > animals_type; animals_type animals; ... animals.insert( animals.end(), new dodo("fido") ); animals.insert( animals.begin(), 0 ) // okOnce you have inserted a null into the container, you mustalways check if the value is null before accessing the object :: for( animals_type::iterator i = animals.begin(); i != animals.end(); ++i ) { if( !boost::is_null(i) ) // always check for validity i->eat(); }If the container support random access, you may also check this as :: for( animals_type::size_type i = 0u; i != animals.size(); ++i ) { if( !animals.is_null(i) ) animals[i].eat(); }Note that it is meaningless to insertnull into ``ptr_set`` and ``ptr_multiset``. Cloneability------------In OO programming it is typical to prohibit copying of objects; the objects may sometimes be allowed to be Cloneable; for example,:: animal* animal::clone() const { return do_clone(); // implemented by private virtual function }If the OO hierarchy thus allows cloning, we need to tell the pointer containers how cloning is to be done. This is simplydone by defining a free-standing function, ``new_clone()``, in the same namespace asthe object hierarchy:: inline animal* new_clone( const animal& a ) { return a.clone(); }That is all, now a lot of functions in a pointer containercan exploit the cloneability of the animal objects. For example :: typedef boost::ptr_list<animal> zoo_type; zoo_type zoo, another_zoo; ... another_zoo.assign( zoo.begin(), zoo.end() );will fill another zoo with clones of the first zoo. Similarly,``insert()`` can now insert clones into your pointer container :: another_zoo.insert( another_zoo.begin(), zoo.begin(), zoo.end() );The whole container can now also be cloned :: zoo_type yet_another_zoo = zoo.clone();Copying or assigning the container has the same effect as cloning (though it is slightly cheaper):: zoo_type yet_another_zoo = zoo; Copying also support derived-to-base class conversions:: boost::ptr_vector<monkey> monkeys = boost::assign::ptr_list_of<monkey>( "bobo" )( "bebe")( "uhuh" ); boost::ptr_vector<animal> animals = monkeys;This also works for maps:: boost::ptr_map<std::string,monkey> monkeys = ...; boost::ptr_map<std::string,animal> animals = monkeys; New functions-------------Given that we know we are working with pointers, a few new functionsmake sense. For example, say you want to remove ananimal from the zoo :: zoo_type::auto_type the_animal = zoo.release( zoo.begin() ); the_animal->eat(); animal* the_animal_ptr = the_animal.release(); // now this is not deleted zoo.release(2); // for random access containersYou can think of ``auto_type`` as a non-copyable form of ``std::auto_ptr``. Notice that when you release an object, thepointer is removed from the container and the containers sizeshrinks. For containers that store nulls, we can exploit that``auto_type`` is convertible to ``bool``:: if( ptr_vector< nullable<T> >::auto_type r = vec.pop_back() ) { ... } You can also release the entire container if youwant to return it from a function :: std::auto_ptr< boost::ptr_deque<animal> > get_zoo() { boost::ptr_deque<animal> result; ... return result.release(); // give up ownership } ... boost::ptr_deque<animal> animals = get_zoo(); Let us assume we want to move an animal object fromone zoo to another. In other words, we want to move the animal and the responsibility of it to another zoo :: another_zoo.transfer( another_zoo.end(), // insert before end zoo.begin(), // insert this animal ... zoo ); // from this container This kind of "move-semantics" is different fromnormal value-based containers. You can think of ``transfer()``as the same as ``splice()`` on ``std::list``.If you want to replace an element, you can easily do so :: zoo_type::auto_type old_animal = zoo.replace( zoo.begin(), new monkey("bibi") ); zoo.replace( 2, old_animal.release() ); // for random access containersA map is slightly different to iterate over than standard maps.Now we say :: typedef boost::ptr_map<std::string, boost::nullable<animal> > animal_map; animal_map map; ... for( animal_map::const_iterator i = map.begin(), e = map.end(); i != e; ++i ) { std::cout << "\n key: " << i->first; std::cout << "\n age: "; if( boost::is_null(i) ) std::cout << "unknown"; else std::cout << i->second->age(); }Except for the check for null, this looks like it would with a normal map. But if ``age()`` had not been a ``const`` member function,it would not have compiled. Maps can also be indexed with bounds-checking :: try { animal& bobo = map.at("bobo"); } catch( boost::bad_ptr_container_operation& e ) { // "bobo" not found } ``std::auto_ptr<U>`` overloads------------------------------Every time there is a function that takes a ``T*`` parameter, there isalso a function taking an ``std::auto_ptr<U>`` parameter. This is of course doneto make the library intregrate seamlessly with ``std::auto_ptr``. For example :: std::ptr_vector<Base> vec; vec.push_back( new Base ); is complemented by :: std::auto_ptr<Derived> p( new Derived ); vec.push_back( p ); Notice that the template argument for ``std::auto_ptr`` does not need tofollow the template argument for ``ptr_vector`` as long as ``Derived*``can be implicitly converted to ``Base*``.Algorithms----------Unfortunately it is not possible to use pointer containers withmutating algorithms from the standard library. However,the most useful onesare instead provided as member functions:: boost::ptr_vector<animal> zoo; ... zoo.sort(); // assume 'bool operator<( const animal&, const animal& )' zoo.sort( std::less<animal>() ); // the same, notice no '*' is present zoo.sort( zoo.begin(), zoo.begin() + 5 ); // sort selected rangeNotice that predicates are automatically wrapped in an `indirect_fun`_ object... _`indirect_fun`: indirect_fun.htmlYou can remove equal and adjacent elements using ``unique()``:: zoo.unique(); // assume 'bool operator==( const animal&, const animal& )' zoo.unique( zoo.begin(), zoo.begin() + 5, my_comparison_predicate() ); If you just want to remove certain elements, use ``erase_if``:: zoo.erase_if( my_predicate() );Finally you may want to merge two sorted containers:: boost::ptr_vector<animal> another_zoo = ...; another_zoo.sort(); // sorted wrt. to same order as 'zoo' zoo.merge( another_zoo ); BOOST_ASSERT( another_zoo.empty() ); That is all; now you have learned all the basics!.. raw:: html <hr> **See also**- `Usage guidelines <guidelines.html>`_ - `Cast utilities <../../conversion/cast.htm#Polymorphic_castl>`_**Navigate**- `home <ptr_container.html>`_- `examples <examples.html>`_.. raw:: html <hr>:Copyright: Thorsten Ottosen 2004-2006. Use, modification and distribution is subject to the Boost Software License, Version 1.0 (see LICENSE_1_0.txt__).__ http://www.boost.org/LICENSE_1_0.txt
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -