📄 zip_iterator.qbk
字号:
[section:zip Zip Iterator]The zip iterator provides the ability to parallel-iterateover several controlled sequences simultaneously. A zip iterator is constructed from a tuple of iterators. Movingthe zip iterator moves all the iterators in parallel.Dereferencing the zip iterator returns a tuple that containsthe results of dereferencing the individual iterators. [section:zip_example Example]There are two main types of applications of the `zip_iterator`. The firstone concerns runtime efficiency: If one has several controlled sequencesof the same length that must be somehow processed, e.g., with the `for_each` algorithm, then it is more efficient to perform justone parallel-iteration rather than several individual iterations. For an example, assume that `vect_of_doubles` and `vect_of_ints`are two vectors of equal length containing doubles and ints, respectively,and consider the following two iterations: std::vector<double>::const_iterator beg1 = vect_of_doubles.begin(); std::vector<double>::const_iterator end1 = vect_of_doubles.end(); std::vector<int>::const_iterator beg2 = vect_of_ints.begin(); std::vector<int>::const_iterator end2 = vect_of_ints.end(); std::for_each(beg1, end1, func_0()); std::for_each(beg2, end2, func_1());These two iterations can now be replaced with a single one as follows: std::for_each( boost::make_zip_iterator( boost::make_tuple(beg1, beg2) ), boost::make_zip_iterator( boost::make_tuple(end1, end2) ), zip_func() );A non-generic implementation of `zip_func` could look as follows: struct zip_func : public std::unary_function<const boost::tuple<const double&, const int&>&, void> { void operator()(const boost::tuple<const double&, const int&>& t) const { m_f0(t.get<0>()); m_f1(t.get<1>()); } private: func_0 m_f0; func_1 m_f1; };The second important application of the `zip_iterator` is as a building blockto make combining iterators. A combining iterator is an iteratorthat parallel-iterates over several controlled sequences and, upondereferencing, returns the result of applying a functor to the values of thesequences at the respective positions. This can now be achieved by using the`zip_iterator` in conjunction with the `transform_iterator`. Suppose, for example, that you have two vectors of doubles, say `vect_1` and `vect_2`, and you need to expose to a clienta controlled sequence containing the products of the elements of `vect_1` and `vect_2`. Rather than placing these productsin a third vector, you can use a combining iterator that calculates theproducts on the fly. Let us assume that `tuple_multiplies` is afunctor that works like `std::multiplies`, except that it takesits two arguments packaged in a tuple. Then the two iterators `it_begin` and `it_end` defined below delimit a controlledsequence containing the products of the elements of `vect_1` and`vect_2`: typedef boost::tuple< std::vector<double>::const_iterator, std::vector<double>::const_iterator > the_iterator_tuple; typedef boost::zip_iterator< the_iterator_tuple > the_zip_iterator; typedef boost::transform_iterator< tuple_multiplies<double>, the_zip_iterator > the_transform_iterator; the_transform_iterator it_begin( the_zip_iterator( the_iterator_tuple( vect_1.begin(), vect_2.begin() ) ), tuple_multiplies<double>() ); the_transform_iterator it_end( the_zip_iterator( the_iterator_tuple( vect_1.end(), vect_2.end() ) ), tuple_multiplies<double>() );[endsect][section:zip_reference Reference][h2 Synopsis] template<typename IteratorTuple> class zip_iterator { public: typedef /* see below */ reference; typedef reference value_type; typedef value_type* pointer; typedef /* see below */ difference_type; typedef /* see below */ iterator_category; zip_iterator(); zip_iterator(IteratorTuple iterator_tuple); template<typename OtherIteratorTuple> zip_iterator( const zip_iterator<OtherIteratorTuple>& other , typename enable_if_convertible< OtherIteratorTuple , IteratorTuple>::type* = 0 // exposition only ); const IteratorTuple& get_iterator_tuple() const; private: IteratorTuple m_iterator_tuple; // exposition only }; template<typename IteratorTuple> zip_iterator<IteratorTuple> make_zip_iterator(IteratorTuple t);The `reference` member of `zip_iterator` is the type of the tuplemade of the reference types of the iterator types in the `IteratorTuple`argument.The `difference_type` member of `zip_iterator` is the `difference_type`of the first of the iterator types in the `IteratorTuple` argument.The `iterator_category` member of `zip_iterator` is convertible to theminimum of the traversal categories of the iterator types in the `IteratorTuple`argument. For example, if the `zip_iterator` holds only vectoriterators, then `iterator_category` is convertible to `boost::random_access_traversal_tag`. If you add a list iterator, then`iterator_category` will be convertible to `boost::bidirectional_traversal_tag`,but no longer to `boost::random_access_traversal_tag`.[h2 Requirements]All iterator types in the argument `IteratorTuple` shall model Readable Iterator. [h2 Concepts]The resulting `zip_iterator` models Readable Iterator.The fact that the `zip_iterator` models only Readable Iterator does not prevent you from modifying the values that the individual iterators pointto. The tuple returned by the `zip_iterator`'s `operator*` is a tuple constructed from the reference types of the individual iterators, not their value types. For example, if `zip_it` is a `zip_iterator` whosefirst member iterator is an `std::vector<double>::iterator`, then thefollowing line will modify the value which the first member iterator of`zip_it` currently points to: zip_it->get<0>() = 42.0;Consider the set of standard traversal concepts obtained by takingthe most refined standard traversal concept modeled by each individualiterator type in the `IteratorTuple` argument.The `zip_iterator` models the least refined standard traversal concept in this set.`zip_iterator<IteratorTuple1>` is interoperable with`zip_iterator<IteratorTuple2>` if and only if `IteratorTuple1`is interoperable with `IteratorTuple2`.[h2 Operations]In addition to the operations required by the concepts modeled by`zip_iterator`, `zip_iterator` provides the followingoperations. zip_iterator();[*Returns:] An instance of `zip_iterator` with `m_iterator_tuple` default constructed. zip_iterator(IteratorTuple iterator_tuple);[*Returns:] An instance of `zip_iterator` with `m_iterator_tuple` initialized to `iterator_tuple`. template<typename OtherIteratorTuple> zip_iterator( const zip_iterator<OtherIteratorTuple>& other , typename enable_if_convertible< OtherIteratorTuple , IteratorTuple>::type* = 0 // exposition only );[*Returns:] An instance of `zip_iterator` that is a copy of `other`.\n[*Requires:] `OtherIteratorTuple` is implicitly convertible to `IteratorTuple`. const IteratorTuple& get_iterator_tuple() const;[*Returns:] `m_iterator_tuple` reference operator*() const;[*Returns:] A tuple consisting of the results of dereferencing all iterators in `m_iterator_tuple`. zip_iterator& operator++();[*Effects:] Increments each iterator in `m_iterator_tuple`.\n[*Returns:] `*this` zip_iterator& operator--();[*Effects:] Decrements each iterator in `m_iterator_tuple`.\n[*Returns:] `*this` template<typename IteratorTuple> zip_iterator<IteratorTuple> make_zip_iterator(IteratorTuple t);[*Returns:] An instance of `zip_iterator<IteratorTuple>` with `m_iterator_tuple` initialized to `t`.[endsect][endsect]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -