📄 kurtosis.hpp
字号:
///////////////////////////////////////////////////////////////////////////////// kurtosis.hpp//// Copyright 2006 Olivier Gygi, Daniel Egloff. Distributed under the Boost// Software License, Version 1.0. (See accompanying file// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_ACCUMULATORS_STATISTICS_KURTOSIS_HPP_EAN_28_10_2005#define BOOST_ACCUMULATORS_STATISTICS_KURTOSIS_HPP_EAN_28_10_2005#include <limits>#include <boost/mpl/placeholders.hpp>#include <boost/accumulators/framework/accumulator_base.hpp>#include <boost/accumulators/framework/extractor.hpp>#include <boost/accumulators/framework/parameters/sample.hpp>#include <boost/accumulators/numeric/functional.hpp>#include <boost/accumulators/framework/depends_on.hpp>#include <boost/accumulators/statistics/mean.hpp>#include <boost/accumulators/statistics/moment.hpp>namespace boost { namespace accumulators{namespace impl{ /////////////////////////////////////////////////////////////////////////////// // kurtosis_impl /** @brief Kurtosis estimation The kurtosis of a sample distribution is defined as the ratio of the 4th central moment and the square of the 2nd central moment (the variance) of the samples, minus 3. The term \f$ -3 \f$ is added in order to ensure that the normal distribution has zero kurtosis. The kurtosis can also be expressed by the simple moments: \f[ \hat{g}_2 = \frac {\widehat{m}_n^{(4)}-4\widehat{m}_n^{(3)}\hat{\mu}_n+6\widehat{m}_n^{(2)}\hat{\mu}_n^2-3\hat{\mu}_n^4} {\left(\widehat{m}_n^{(2)} - \hat{\mu}_n^{2}\right)^2} - 3, \f] where \f$ \widehat{m}_n^{(i)} \f$ are the \f$ i \f$-th moment and \f$ \hat{\mu}_n \f$ the mean (first moment) of the \f$ n \f$ samples. */ template<typename Sample> struct kurtosis_impl : accumulator_base { // for boost::result_of typedef typename numeric::functional::average<Sample, Sample>::result_type result_type; kurtosis_impl(dont_care) {} template<typename Args> result_type result(Args const &args) const { return numeric::average( moment<4>(args) - 4. * moment<3>(args) * mean(args) + 6. * moment<2>(args) * mean(args) * mean(args) - 3. * mean(args) * mean(args) * mean(args) * mean(args) , ( moment<2>(args) - mean(args) * mean(args) ) * ( moment<2>(args) - mean(args) * mean(args) ) ) - 3.; } };} // namespace impl///////////////////////////////////////////////////////////////////////////////// tag::kurtosis//namespace tag{ struct kurtosis : depends_on<mean, moment<2>, moment<3>, moment<4> > { /// INTERNAL ONLY /// typedef accumulators::impl::kurtosis_impl<mpl::_1> impl; };}///////////////////////////////////////////////////////////////////////////////// extract::kurtosis//namespace extract{ extractor<tag::kurtosis> const kurtosis = {};}using extract::kurtosis;// So that kurtosis can be automatically substituted with// weighted_kurtosis when the weight parameter is non-voidtemplate<>struct as_weighted_feature<tag::kurtosis>{ typedef tag::weighted_kurtosis type;};template<>struct feature_of<tag::weighted_kurtosis> : feature_of<tag::kurtosis>{};}} // namespace boost::accumulators#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -