📄 apply_operation_base.hpp
字号:
/* Copyright 2005-2007 Adobe Systems Incorporated Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). See http://opensource.adobe.com/gil for most recent version including documentation.*//*************************************************************************************************/#ifndef GIL_APPLY_OPERATION_BASE_HPP#define GIL_APPLY_OPERATION_BASE_HPP#include "../../gil_config.hpp"#include "../../utilities.hpp"#include <boost/mpl/begin.hpp>#include <boost/mpl/next.hpp>#include <boost/mpl/deref.hpp>#include <boost/mpl/size.hpp>#include <boost/preprocessor/repeat.hpp> /////////////////////////////////////////////////////////////////////////////////////////// \file /// \brief Given an object with run-time specified type (denoted as an array of Bits, dynamic index, and a static set of Types) and a generic operation, /// casts the object to its appropriate type and applies the operation/// \author Lubomir Bourdev and Hailin Jin \n/// Adobe Systems Incorporated/// \date 2005-2007 \n Last updated on November 6, 2007///////////////////////////////////////////////////////////////////////////////////////////namespace boost { namespace gil {/*GENERATE_APPLY_FWD_OPS generates for every N functions that look like this (for N==2): template <> struct apply_operation_fwd_fn<3> { template <typename Types, typename Bits, typename UnaryOp> typename UnaryOp::result_type apply(Bits& bits, std::size_t index, UnaryOp op) const { typedef typename mpl::begin<Types>::type T0; typedef typename mpl::next<T0>::type T1; typedef typename mpl::next<T1>::type T2; switch (index) { case 0: return op(reinterpret_cast<typename mpl::deref<T0>::type&>(bits)); case 1: return op(reinterpret_cast<typename mpl::deref<T1>::type&>(bits)); case 2: return op(reinterpret_cast<typename mpl::deref<T2>::type&>(bits)); } throw; } template <typename Types, typename Bits, typename UnaryOp> typename UnaryOp::result_type applyc(const Bits& bits, std::size_t index, UnaryOp op) const { typedef typename mpl::begin<Types>::type T0; typedef typename mpl::next<T0>::type T1; typedef typename mpl::next<T1>::type T2; switch (index) { case 0: return op(reinterpret_cast<const typename mpl::deref<T0>::type&>(bits)); case 1: return op(reinterpret_cast<const typename mpl::deref<T1>::type&>(bits)); case 2: return op(reinterpret_cast<const typename mpl::deref<T2>::type&>(bits)); } throw; } };*/#define GIL_FWD_TYPEDEFS(z, N, text) T##N; typedef typename mpl::next<T##N>::type #define GIL_FWD_CASE(z, N, SUM) case N: return op(*gil_reinterpret_cast<typename mpl::deref<T##N>::type*>(&bits));#define GIL_FWD_CONST_CASE(z, N, SUM) case N: return op(*gil_reinterpret_cast_c<const typename mpl::deref<T##N>::type*>(&bits));#define GIL_APPLY_FWD_OP(z, N, text) \ template <> struct apply_operation_fwd_fn<BOOST_PP_ADD(N,1)> { \ template <typename Types, typename Bits, typename UnaryOp> \ typename UnaryOp::result_type apply(Bits& bits, std::size_t index, UnaryOp op) const { \ typedef typename mpl::begin<Types>::type \ BOOST_PP_REPEAT(N, GIL_FWD_TYPEDEFS, BOOST_PP_EMPTY) \ T##N; \ switch (index) { \ BOOST_PP_REPEAT(BOOST_PP_ADD(N,1), GIL_FWD_CASE, BOOST_PP_EMPTY) \ } \ throw; \ } \ template <typename Types, typename Bits, typename UnaryOp> \ typename UnaryOp::result_type applyc(const Bits& bits, std::size_t index, UnaryOp op) const { \ typedef typename mpl::begin<Types>::type \ BOOST_PP_REPEAT(N, GIL_FWD_TYPEDEFS, BOOST_PP_EMPTY) \ T##N; \ switch (index) { \ BOOST_PP_REPEAT(BOOST_PP_ADD(N,1), GIL_FWD_CONST_CASE,BOOST_PP_EMPTY) \ } \ throw; \ } \ };#define GIL_GENERATE_APPLY_FWD_OPS(N) BOOST_PP_REPEAT(N, GIL_APPLY_FWD_OP, BOOST_PP_EMPTY)namespace detail {template <std::size_t N> struct apply_operation_fwd_fn {};// Create specializations of apply_operation_fn for each N 0..100GIL_GENERATE_APPLY_FWD_OPS(99)} // namespace detail// unary applicationtemplate <typename Types, typename Bits, typename Op> typename Op::result_type GIL_FORCEINLINE apply_operation_basec(const Bits& bits, std::size_t index, Op op) { return detail::apply_operation_fwd_fn<mpl::size<Types>::value>().template applyc<Types>(bits,index,op);}// unary applicationtemplate <typename Types, typename Bits, typename Op> typename Op::result_type GIL_FORCEINLINE apply_operation_base( Bits& bits, std::size_t index, Op op) { return detail::apply_operation_fwd_fn<mpl::size<Types>::value>().template apply<Types>(bits,index,op);}namespace detail { template <typename T2, typename Op> struct reduce_bind1 { const T2& _t2; mutable Op& _op; typedef typename Op::result_type result_type; reduce_bind1(const T2& t2, Op& op) : _t2(t2), _op(op) {} template <typename T1> GIL_FORCEINLINE result_type operator()(const T1& t1) { return _op(t1, _t2); } }; template <typename Types1, typename Bits1, typename Op> struct reduce_bind2 { const Bits1& _bits1; std::size_t _index1; mutable Op& _op; typedef typename Op::result_type result_type; reduce_bind2(const Bits1& bits1, std::size_t index1, Op& op) : _bits1(bits1), _index1(index1), _op(op) {} template <typename T2> GIL_FORCEINLINE result_type operator()(const T2& t2) { return apply_operation_basec<Types1>(_bits1, _index1, reduce_bind1<T2,Op>(t2, _op)); } };} // namespace detail// Binary application by applying on each dimension separatelytemplate <typename Types1, typename Types2, typename Bits1, typename Bits2, typename Op>static typename Op::result_type GIL_FORCEINLINE apply_operation_base(const Bits1& bits1, std::size_t index1, const Bits2& bits2, std::size_t index2, Op op) { return apply_operation_basec<Types2>(bits2,index2,detail::reduce_bind2<Types1,Bits1,Op>(bits1,index1,op));}#undef GIL_FWD_TYPEDEFS#undef GIL_FWD_CASE#undef GIL_FWD_CONST_CASE#undef GIL_APPLY_FWD_OP#undef GIL_GENERATE_APPLY_FWD_OPS#undef BHS} } // namespace boost::gil#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -