⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kqueue_reactor.hpp

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 HPP
📖 第 1 页 / 共 2 页
字号:
//// kqueue_reactor.hpp// ~~~~~~~~~~~~~~~~~~//// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)//// Distributed under the Boost Software License, Version 1.0. (See accompanying// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)//#ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP#define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP#if defined(_MSC_VER) && (_MSC_VER >= 1200)# pragma once#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)#include <boost/asio/detail/push_options.hpp>#include <boost/asio/detail/kqueue_reactor_fwd.hpp>#if defined(BOOST_ASIO_HAS_KQUEUE)#include <boost/asio/detail/push_options.hpp>#include <cstddef>#include <vector>#include <sys/types.h>#include <sys/event.h>#include <sys/time.h>#include <boost/config.hpp>#include <boost/date_time/posix_time/posix_time_types.hpp>#include <boost/throw_exception.hpp>#include <boost/system/system_error.hpp>#include <boost/asio/detail/pop_options.hpp>#include <boost/asio/error.hpp>#include <boost/asio/io_service.hpp>#include <boost/asio/detail/bind_handler.hpp>#include <boost/asio/detail/mutex.hpp>#include <boost/asio/detail/task_io_service.hpp>#include <boost/asio/detail/thread.hpp>#include <boost/asio/detail/reactor_op_queue.hpp>#include <boost/asio/detail/select_interrupter.hpp>#include <boost/asio/detail/service_base.hpp>#include <boost/asio/detail/signal_blocker.hpp>#include <boost/asio/detail/socket_types.hpp>#include <boost/asio/detail/timer_queue.hpp>// Older versions of Mac OS X may not define EV_OOBAND.#if !defined(EV_OOBAND)# define EV_OOBAND EV_FLAG1#endif // !defined(EV_OOBAND)namespace boost {namespace asio {namespace detail {template <bool Own_Thread>class kqueue_reactor  : public boost::asio::detail::service_base<kqueue_reactor<Own_Thread> >{public:  // Per-descriptor data.  struct per_descriptor_data  {    bool allow_speculative_read;    bool allow_speculative_write;  };  // Constructor.  kqueue_reactor(boost::asio::io_service& io_service)    : boost::asio::detail::service_base<        kqueue_reactor<Own_Thread> >(io_service),      mutex_(),      kqueue_fd_(do_kqueue_create()),      wait_in_progress_(false),      interrupter_(),      read_op_queue_(),      write_op_queue_(),      except_op_queue_(),      pending_cancellations_(),      stop_thread_(false),      thread_(0),      shutdown_(false),      need_kqueue_wait_(true)  {    // Start the reactor's internal thread only if needed.    if (Own_Thread)    {      boost::asio::detail::signal_blocker sb;      thread_ = new boost::asio::detail::thread(          bind_handler(&kqueue_reactor::call_run_thread, this));    }    // Add the interrupter's descriptor to the kqueue.    struct kevent event;    EV_SET(&event, interrupter_.read_descriptor(),        EVFILT_READ, EV_ADD, 0, 0, 0);    ::kevent(kqueue_fd_, &event, 1, 0, 0, 0);  }  // Destructor.  ~kqueue_reactor()  {    shutdown_service();    close(kqueue_fd_);  }  // Destroy all user-defined handler objects owned by the service.  void shutdown_service()  {    boost::asio::detail::mutex::scoped_lock lock(mutex_);    shutdown_ = true;    stop_thread_ = true;    lock.unlock();    if (thread_)    {      interrupter_.interrupt();      thread_->join();      delete thread_;      thread_ = 0;    }    read_op_queue_.destroy_operations();    write_op_queue_.destroy_operations();    except_op_queue_.destroy_operations();    for (std::size_t i = 0; i < timer_queues_.size(); ++i)      timer_queues_[i]->destroy_timers();    timer_queues_.clear();  }  // Initialise the task, but only if the reactor is not in its own thread.  void init_task()  {    if (!Own_Thread)    {      typedef task_io_service<kqueue_reactor<Own_Thread> > task_io_service_type;      use_service<task_io_service_type>(this->get_io_service()).init_task();    }  }  // Register a socket with the reactor. Returns 0 on success, system error  // code on failure.  int register_descriptor(socket_type, per_descriptor_data& descriptor_data)  {    descriptor_data.allow_speculative_read = true;    descriptor_data.allow_speculative_write = true;    return 0;  }  // Start a new read operation. The handler object will be invoked when the  // given descriptor is ready to be read, or an error has occurred.  template <typename Handler>  void start_read_op(socket_type descriptor,      per_descriptor_data& descriptor_data, Handler handler,      bool allow_speculative_read = true)  {    if (allow_speculative_read && descriptor_data.allow_speculative_read)    {      boost::system::error_code ec;      std::size_t bytes_transferred = 0;      if (handler.perform(ec, bytes_transferred))      {        handler.complete(ec, bytes_transferred);        return;      }      // We only get one shot at a speculative read in this function.      allow_speculative_read = false;    }    boost::asio::detail::mutex::scoped_lock lock(mutex_);    if (shutdown_)      return;    if (!allow_speculative_read)      need_kqueue_wait_ = true;    else if (!read_op_queue_.has_operation(descriptor))    {      // Speculative reads are ok as there are no queued read operations.      descriptor_data.allow_speculative_read = true;      boost::system::error_code ec;      std::size_t bytes_transferred = 0;      if (handler.perform(ec, bytes_transferred))      {        handler.complete(ec, bytes_transferred);        return;      }    }    // Speculative reads are not ok as there will be queued read operations.    descriptor_data.allow_speculative_read = false;    if (read_op_queue_.enqueue_operation(descriptor, handler))    {      struct kevent event;      EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);      if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)      {        boost::system::error_code ec(errno,            boost::asio::error::get_system_category());        read_op_queue_.perform_all_operations(descriptor, ec);      }    }  }  // Start a new write operation. The handler object will be invoked when the  // given descriptor is ready to be written, or an error has occurred.  template <typename Handler>  void start_write_op(socket_type descriptor,      per_descriptor_data& descriptor_data, Handler handler,      bool allow_speculative_write = true)  {    if (allow_speculative_write && descriptor_data.allow_speculative_write)    {      boost::system::error_code ec;      std::size_t bytes_transferred = 0;      if (handler.perform(ec, bytes_transferred))      {        handler.complete(ec, bytes_transferred);        return;      }      // We only get one shot at a speculative write in this function.      allow_speculative_write = false;    }    boost::asio::detail::mutex::scoped_lock lock(mutex_);    if (shutdown_)      return;    if (!allow_speculative_write)      need_kqueue_wait_ = true;    else if (!write_op_queue_.has_operation(descriptor))    {      // Speculative writes are ok as there are no queued write operations.      descriptor_data.allow_speculative_write = true;      boost::system::error_code ec;      std::size_t bytes_transferred = 0;      if (handler.perform(ec, bytes_transferred))      {        handler.complete(ec, bytes_transferred);        return;      }    }    // Speculative writes are not ok as there will be queued write operations.    descriptor_data.allow_speculative_write = false;    if (write_op_queue_.enqueue_operation(descriptor, handler))    {      struct kevent event;      EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);      if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)      {        boost::system::error_code ec(errno,            boost::asio::error::get_system_category());        write_op_queue_.perform_all_operations(descriptor, ec);      }    }  }  // Start a new exception operation. The handler object will be invoked when  // the given descriptor has exception information, or an error has occurred.  template <typename Handler>  void start_except_op(socket_type descriptor,      per_descriptor_data&, Handler handler)  {    boost::asio::detail::mutex::scoped_lock lock(mutex_);    if (shutdown_)      return;    if (except_op_queue_.enqueue_operation(descriptor, handler))    {      struct kevent event;      if (read_op_queue_.has_operation(descriptor))        EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);      else        EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);      if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)      {        boost::system::error_code ec(errno,            boost::asio::error::get_system_category());        except_op_queue_.perform_all_operations(descriptor, ec);      }    }  }  // Start a new write operation. The handler object will be invoked when the  // given descriptor is ready to be written, or an error has occurred.  template <typename Handler>  void start_connect_op(socket_type descriptor,      per_descriptor_data& descriptor_data, Handler handler)  {    boost::asio::detail::mutex::scoped_lock lock(mutex_);    if (shutdown_)      return;    // Speculative writes are not ok as there will be queued write operations.    descriptor_data.allow_speculative_write = false;    if (write_op_queue_.enqueue_operation(descriptor, handler))    {      struct kevent event;      EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);      if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)      {        boost::system::error_code ec(errno,            boost::asio::error::get_system_category());        write_op_queue_.perform_all_operations(descriptor, ec);      }    }  }  // Cancel all operations associated with the given descriptor. The  // handlers associated with the descriptor will be invoked with the  // operation_aborted error.  void cancel_ops(socket_type descriptor, per_descriptor_data&)  {    boost::asio::detail::mutex::scoped_lock lock(mutex_);    cancel_ops_unlocked(descriptor);  }  // Cancel any operations that are running against the descriptor and remove  // its registration from the reactor.  void close_descriptor(socket_type descriptor, per_descriptor_data&)  {    boost::asio::detail::mutex::scoped_lock lock(mutex_);    // Remove the descriptor from kqueue.    struct kevent event[2];    EV_SET(&event[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);    EV_SET(&event[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);    ::kevent(kqueue_fd_, event, 2, 0, 0, 0);        // Cancel any outstanding operations associated with the descriptor.    cancel_ops_unlocked(descriptor);  }  // Add a new timer queue to the reactor.  template <typename Time_Traits>  void add_timer_queue(timer_queue<Time_Traits>& timer_queue)  {    boost::asio::detail::mutex::scoped_lock lock(mutex_);    timer_queues_.push_back(&timer_queue);  }  // Remove a timer queue from the reactor.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -