📄 gabasega.h
字号:
// $Header: /usr/people/mbwall/src/galib/ga/RCS/GABaseGA.h,v 1.4 1999/03/30 02:37:52 mbwall Exp $
/* ----------------------------------------------------------------------------
gabase.h
mbwall 28jul94
Copyright (c) 1995 Massachusetts Institute of Technology
all rights reserved
Header for the base genetic algorithm class.
---------------------------------------------------------------------------- */
#ifndef _ga_gabase_h_
#define _ga_gabase_h_
#include <stdio.h>
#include <string.h>
#include <ga/gaconfig.h>
#include <ga/gaid.h>
#include <ga/GAParameter.h>
#include <ga/GAStatistics.h>
#include <ga/GAGenome.h>
#include <ga/GAPopulation.h>
// When specifying parameters for a GAlib object, you can use the fullname (the
// name used in parameters data files) or the short name (the name typically
// used on the command line). When specifying parameters in your code you can
// use a string, or use the predefined macros below (kind of like using the
// resource/class names in Motif for you Xt jocks).
#define gaNnGenerations "number_of_generations"
#define gaSNnGenerations "ngen"
#define gaNpConvergence "convergence_percentage"
#define gaSNpConvergence "pconv"
#define gaNnConvergence "generations_to_convergence"
#define gaSNnConvergence "nconv"
#define gaNpCrossover "crossover_probability"
#define gaSNpCrossover "pcross"
#define gaNpMutation "mutation_probability"
#define gaSNpMutation "pmut"
#define gaNpopulationSize "population_size"
#define gaSNpopulationSize "popsize"
#define gaNnPopulations "number_of_populations"
#define gaSNnPopulations "npop"
#define gaNpReplacement "replacement_percentage"
#define gaSNpReplacement "prepl"
#define gaNnReplacement "replacement_number"
#define gaSNnReplacement "nrepl"
#define gaNnBestGenomes "number_of_best"
#define gaSNnBestGenomes "nbest"
#define gaNscoreFrequency "score_frequency"
#define gaSNscoreFrequency "sfreq"
#define gaNflushFrequency "flush_frequency"
#define gaSNflushFrequency "ffreq"
#define gaNscoreFilename "score_filename"
#define gaSNscoreFilename "sfile"
#define gaNselectScores "select_scores"
#define gaSNselectScores "sscores"
#define gaNelitism "elitism"
#define gaSNelitism "el"
#define gaNnOffspring "number_of_offspring"
#define gaSNnOffspring "noffspr"
#define gaNrecordDiversity "record_diversity"
#define gaSNrecordDiversity "recdiv"
#define gaNpMigration "migration_percentage"
#define gaSNpMigration "pmig"
#define gaNnMigration "migration_number"
#define gaSNnMigration "nmig"
#define gaNminimaxi "minimaxi"
#define gaSNminimaxi "mm"
extern int gaDefNumGen;
extern float gaDefPConv;
extern int gaDefNConv;
extern float gaDefPMut;
extern float gaDefPCross;
extern int gaDefPopSize;
extern int gaDefNPop;
extern float gaDefPRepl;
extern int gaDefNRepl;
extern int gaDefNumOff;
extern float gaDefPMig;
extern int gaDefNMig;
extern int gaDefSelectScores;
extern int gaDefMiniMaxi;
extern GABoolean gaDefDivFlag;
extern GABoolean gaDefElitism;
/* ----------------------------------------------------------------------------
The base GA class is virtual - it defines the core data elements and parts
of the interface that are common to all genetic algorithms (as defined in
GAlib, that is).
initialize
Undefined for the base class. The initialization routine typically calls
the population initializer (which typically calls the genome initializers).
It should also reset the statistics.
step
Evolve by one generation. 'generation' can be defined different ways for
different genetic algorithms, but in the traditional formulation a generation
mean creation of a new population (or portion thereof).
done
Calls the completion measure routine to tell whether or not the GA is done.
evolve
This method is provided as a convenience so that you don't have to increment
the GA generation-by-generation by hand. If you do decide to do it by hand,
be sure that you initialize before you start evolving!
---------------------------------------------------------------------------- */
class GAGeneticAlgorithm : public GAID {
public:
GADefineIdentity("GAIncrementalGA", GAID::BaseGA);
typedef GABoolean (*Terminator)(GAGeneticAlgorithm & ga);
enum { MINIMIZE=-1, MAXIMIZE=1 };
static GAParameterList& registerDefaultParameters(GAParameterList&);
static GABoolean TerminateUponGeneration(GAGeneticAlgorithm &);
static GABoolean TerminateUponConvergence(GAGeneticAlgorithm &);
static GABoolean TerminateUponPopConvergence(GAGeneticAlgorithm &);
public:
GAGeneticAlgorithm(const GAGenome&);
GAGeneticAlgorithm(const GAPopulation&);
GAGeneticAlgorithm(const GAGeneticAlgorithm&);
virtual ~GAGeneticAlgorithm();
virtual void copy(const GAGeneticAlgorithm&);
GABoolean done(){ return (*cf)(*this); }
virtual void initialize(unsigned int seed=0) =0;
virtual void step() =0;
virtual void evolve(unsigned int seed=0){
initialize(seed);
while(!done()){step();}
if(stats.flushFrequency() > 0) stats.flushScores();
}
#ifndef NO_STREAMS
virtual int write(const char*) const {return 0;}
virtual int write(ostream&) const {return 0;}
virtual int read(const char*){return 0;}
virtual int read(istream&){return 0;}
#endif
void * userData() const {return ud;}
void * userData(void * d){return ud=d;}
Terminator terminator() const {return cf;}
Terminator terminator(Terminator f){return cf=f;}
const GAParameterList& parameters() const { return params; }
const GAParameterList& parameters(const GAParameterList&);
const GAParameterList& parameters(int&, char **, GABoolean flag=gaFalse);
#ifndef NO_STREAMS
const GAParameterList& parameters(const char* filename, GABoolean f=gaFalse);
const GAParameterList& parameters(istream&, GABoolean flag=gaFalse);
#endif
virtual int get(const char*, void*) const;
virtual int setptr(const char*, const void*);
int set(const char* s, int v) { return setptr(s, (void*)&v); }
int set(const char* s, unsigned int v) { return setptr(s, (void*)&v); }
int set(const char* s, char v) { return setptr(s, (void*)&v); }
int set(const char* s, const char* v) { return setptr(s, (void*)v); }
int set(const char* s, const void* v) { return setptr(s, v); }
int set(const char* s, double v);
virtual int minimaxi() const {return minmax;}
virtual int minimaxi(int m);
int minimize() {return minimaxi(MINIMIZE);}
int maximize() {return minimaxi(MAXIMIZE);}
int nGenerations() const {return ngen;}
int nGenerations(unsigned int n)
{params.set(gaNnGenerations, n); return ngen = n;}
int nConvergence() const {return nconv;}
int nConvergence(unsigned int n)
{params.set(gaNnConvergence, n); return nconv = stats.nConvergence(n);}
float pConvergence() const {return pconv;}
float pConvergence(float p)
{params.set(gaNpConvergence, p); return pconv = p;}
float pCrossover() const {return pcross;}
float pCrossover(float p)
{params.set(gaNpCrossover, p); return pcross = p;}
float pMutation() const {return pmut;}
float pMutation(float p)
{params.set(gaNpMutation, p); return pmut = p;}
GAGenome::SexualCrossover crossover(GAGenome::SexualCrossover f)
{return scross=f;}
GAGenome::SexualCrossover sexual() const {return scross;}
GAGenome::AsexualCrossover crossover(GAGenome::AsexualCrossover f)
{return across=f;}
GAGenome::AsexualCrossover asexual() const {return across;}
const GAStatistics & statistics() const {return stats;}
float convergence() const {return stats.convergence();}
int generation() const {return stats.generation();}
void flushScores() {if(stats.flushFrequency() > 0) stats.flushScores();}
int scoreFrequency() const {return stats.scoreFrequency();}
int scoreFrequency(unsigned int x)
{params.set(gaNscoreFrequency, x); return stats.scoreFrequency(x);}
int flushFrequency() const {return stats.flushFrequency();}
int flushFrequency(unsigned int x)
{params.set(gaNflushFrequency, x); return stats.flushFrequency(x);}
const char* scoreFilename() const {return stats.scoreFilename();}
const char* scoreFilename(const char* fn)
{params.set(gaNscoreFilename, fn); return stats.scoreFilename(fn);}
int selectScores(){return stats.selectScores();}
int selectScores(int w)
{params.set(gaNselectScores, w); return stats.selectScores(w);}
GABoolean recordDiversity() const {return stats.recordDiversity();}
GABoolean recordDiversity(GABoolean f)
{params.set(gaNrecordDiversity, (int)f); return stats.recordDiversity(f);}
virtual const GAPopulation& population() const {return *pop;}
virtual const GAPopulation& population(const GAPopulation&);
virtual int populationSize() const {return pop->size();}
virtual int populationSize(unsigned int n);
virtual int nBestGenomes() const {return stats.nBestGenomes();}
virtual int nBestGenomes(unsigned int n) {
params.set(gaNnBestGenomes, n);
return stats.nBestGenomes(pop->individual(0), n);
}
virtual GAScalingScheme& scaling() const {return pop->scaling();}
virtual GAScalingScheme& scaling(const GAScalingScheme & s)
{return pop->scaling(s);}
virtual GASelectionScheme& selector() const {return pop->selector(); }
virtual GASelectionScheme& selector(const GASelectionScheme& s)
{return pop->selector(s);}
virtual void objectiveFunction(GAGenome::Evaluator f);
virtual void objectiveData(const GAEvalData& v);
protected:
GAStatistics stats;
GAParameterList params;
GAPopulation *pop;
Terminator cf; // function for determining done-ness
void * ud; // pointer to user data structure
unsigned int ngen;
unsigned int nconv;
float pconv;
float pcross;
float pmut;
int minmax;
GAGenome::SexualCrossover scross; // sexual crossover to use
GAGenome::AsexualCrossover across; // asexual crossover to use
};
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -