⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ex10.c

📁 单目标遗传算法优化的经典例子
💻 C
字号:
/* ----------------------------------------------------------------------------
  ex10.C
  mbwall 10apr95
  Copyright (c) 1995-1996  Massachusetts Institute of Technology

 DESCRIPTION:
   Sample program that illustrates how to use a distance function to do 
speciation.  This example does both gene-based and phenotype-based distance
calculations.  The differences are quite interesting.  Also, the length of the
bit string (i.e. the size of the search space) is also a significant factor in
the performance of the speciation methods.
   Notice that Goldberg describes fitness scaling speciation in the context of
a simple genetic algorithm.  You can try using it with a steady-state 
algorithm, but you'll get bogus results unless you modify the algorithm.
---------------------------------------------------------------------------- */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <ga/ga.h>

#define USE_RAW_SINE

#ifndef M_PI
#define M_PI            3.14159265358979323846
#endif

#define NBITS     8

#ifdef USE_RAW_SINE
#define FUNCTION  Function1
#define MIN_VALUE 0
#define MAX_VALUE 5
#else
#define FUNCTION  Function2
#define MIN_VALUE -100
#define MAX_VALUE 100
#endif

float Function1(float);
float Function2(float);
float Objective(GAGenome &);
float BitDistance(const GAGenome & a, const GAGenome & b);
float PhenotypeDistance(const GAGenome & a, const GAGenome & b);

int
main(int argc, char **argv)
{
  cout << "Example 10\n\n";
  cout << "This program uses sharing to do speciation.  The objective\n";
  cout << "function has more than one optimum, so different genomes\n";
  cout << "may have equally high scores.  Speciation keeps the population\n";
  cout << "from clustering at one optimum.\n";
  cout << "  Both gene-wise and phenotype-wise distance functions are used.\n";
  cout << "  Populations from all three runs are written to the files \n";
  cout << "pop.nospec.dat, pop.genespec.dat and pop.phenespec.dat.  The\n";
  cout << "function is written to the file sinusoid.dat\n\n";
  cout.flush();

// See if we've been given a seed to use (for testing purposes).  When you
// specify a random seed, the evolution will be exactly the same each time
// you use that seed number.

  for(int ii=1; ii<argc; ii++) {
    if(strcmp(argv[ii++],"seed") == 0) {
      GARandomSeed((unsigned int)atoi(argv[ii]));
    }
  }

  int i;
  char filename[32] = "sinusoid.dat";
  char popfilename1[32] = "pop.nospec.dat";
  char popfilename2[32] = "pop.genespec.dat";
  char popfilename3[32] = "pop.phenespec.dat";
  ofstream outfile;

// Create a phenotype for two variables.  The number of bits you can use to
// represent any number is limited by the type of computer you are using.  In
// this case, we use 16 bits to represent a floating point number whose value
// can range from the minimum to maximum value as defined by the macros.

  GABin2DecPhenotype map;
  map.add(NBITS, MIN_VALUE, MAX_VALUE);

// Create the template genome using the phenotype map we just made.

  GABin2DecGenome genome(map, Objective);

// Now create the GA using the genome and set all of the parameters.
// You'll get different results depending on the type of GA that you use.  The
// steady-state GA tends to converge faster (depending on the type of replace-
// ment method you specify).  

  GASimpleGA ga(genome);
  ga.set(gaNpopulationSize, 200);
  ga.set(gaNnGenerations, 50);
  ga.set(gaNpMutation, 0.001);
  ga.set(gaNpCrossover, 0.9);
  ga.parameters(argc, argv);


// Do the non-speciated and write to file the best-of-generation.

  cout << "running with no speciation (fitness proportionate scaling)...\n";
  cout.flush();
  GALinearScaling lin;
  ga.scaling(lin);
  ga.evolve();
  genome = ga.statistics().bestIndividual();
  cout << "the ga found an optimum at the point "<<genome.phenotype(0)<<endl;

  outfile.open(popfilename1, (ios::out | ios::trunc));
  if(outfile.fail()){
    cerr << "Cannot open " << popfilename1 << " for output.\n";
    exit(1);
  }
  for(i=0; i<ga.population().size(); i++){
    outfile<<((GABin2DecGenome&)(ga.population().individual(i))).phenotype(0);
    outfile << "\t";
    outfile << ga.population().individual(i).score() << "\n";
  }
  outfile.close();



// Now do speciation using the gene-wise distance function

  cout << "running the ga with speciation (sharing using bit-wise)...\n";
  cout.flush();
  GASharing bitSharing(BitDistance);
  ga.scaling(bitSharing);
  ga.evolve();
  genome = ga.statistics().bestIndividual();
  cout << "the ga found an optimum at the point "<<genome.phenotype(0)<<endl;

  outfile.open(popfilename2, (ios::out | ios::trunc));
  if(outfile.fail()){
    cerr << "Cannot open " << popfilename2 << " for output.\n";
    exit(1);
  }
  for(i=0; i<ga.population().size(); i++){
    outfile<<((GABin2DecGenome&)(ga.population().individual(i))).phenotype(0);
    outfile << "\t";
    outfile << ga.population().individual(i).score() << "\n";
  }
  outfile.close();



// Now do speciation using the phenotype-wise distance function

  cout << "running the ga with speciation (sharing using phenotype-wise)...\n";
  cout.flush();
  GASharing pheneSharing(PhenotypeDistance);
  ga.scaling(pheneSharing);
  ga.evolve();
  genome = ga.statistics().bestIndividual();
  cout << "the ga found an optimum at the point "<<genome.phenotype(0)<<endl;

  outfile.open(popfilename3, (ios::out | ios::trunc));
  if(outfile.fail()){
    cerr << "Cannot open " << popfilename3 << " for output.\n";
    exit(1);
  }
  for(i=0; i<ga.population().size(); i++){
    outfile<<((GABin2DecGenome&)(ga.population().individual(i))).phenotype(0);
    outfile << "\t";
    outfile << ga.population().individual(i).score() << "\n";
  }
  outfile.close();


// Now dump the function to file for comparisons

  cout << "dumping the function to file..." << endl;
  outfile.open(filename, (ios::out | ios::trunc));
  if(outfile.fail()){
    cerr << "Cannot open " << filename << " for output.\n";
    exit(1);
  }
  float inc = MAX_VALUE - MIN_VALUE;
  inc /= pow(2.0,NBITS);
  for(float x=MIN_VALUE; x<=MAX_VALUE; x+=inc){
    outfile << x << "\t" << FUNCTION (x) << "\n";
  }
  outfile << "\n";
  outfile.close();

  return 0;
}
 




// You can choose between one of two sinusoidal functions.  The first one has
// peaks of equal amplitude.  The second is modulated.
float
Objective(GAGenome & c){
  GABin2DecGenome & genome = (GABin2DecGenome &)c;
  return FUNCTION (genome.phenotype(0));
}

float
Function1(float v) {
  return 1 + sin(v*2*M_PI);
}

float
Function2(float v) {
  float y;
  y = 100.0 * exp(-fabs(v) / 50.0) * (1.0 - cos(v * M_PI * 2.0 / 25.0));
  if(v < -100 || v > 100) y = 0;
  if(y < 0) y = 0;
  return y+0.00001;
}





// Here are a couple of possible distance functions for this problem.  One of
// them uses the genes to determine the same-ness, the other uses the
// phenotypes to determine same-ness.  If the genomes are the same, then
// we return a 0.  If they are completely different then we return a 1.
//   In either case, you should be sure that the distance function will return
// values only between 0 and 1 inclusive.  If your function returns values
// outside these limits, the GA will produce bogus results and it WILL NOT warn
// you that your distance function is brain-dead!

// This distance function uses the genes to determine same-ness.  All we do 
// is check to see if the bit strings are identical.

float
BitDistance(const GAGenome & c1, const GAGenome & c2){
  GABin2DecGenome & a = (GABin2DecGenome &)c1;
  GABin2DecGenome & b = (GABin2DecGenome &)c2;

  float x=0;
  for(int i=a.length()-1; i>=0; i--)
    x += (a[i] != b[i] ? 1 : 0);

  return x/a.length();
}



// This distance function looks at the phenotypes rather than the genes of the
// genome.  This distance function will try to drive them to extremes.

float
PhenotypeDistance(const GAGenome & c1, const GAGenome & c2){
  GABin2DecGenome & a = (GABin2DecGenome &)c1;
  GABin2DecGenome & b = (GABin2DecGenome &)c2;

  return fabs(a.phenotype(0) - b.phenotype(0)) / (MAX_VALUE-MIN_VALUE);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -