📄 quadcg.c
字号:
printf("run bestfitq and then contourA or contourB to plot stresses\n");
}
return(0);
}
integ(xni)
double xni[][2];
{
double c;
/* ----- integration points xni() ----- */
c = .57735026919;
xni[0][0] = -c;
xni[0][1] = -c;
xni[1][0] = c;
xni[1][1] = -c;
xni[2][0] = c;
xni[2][1] = c;
xni[3][0] = -c;
xni[3][1] = c;
return(0);
}
dmatrix(n,pm,mat,npr,pnu1,al1,lc,d)
int lc,n,npr,*mat;
double *pm,*pnu1,*al1,d[][3];
{
int m;
double e,c,c1,c2,c3,pnu,al;
/* ----- d() matrix ----- */
/* --- material properties --- */
m = mat[n]-1;
e = pm[npr*m];
pnu= pm[npr*m+1];
al = pm[npr*m+2];
*pnu1 = pnu;
*al1 = al;
/* --- d() matrix --- */
if (lc == 1) {
/* --- plane stress --- */
c1 = e / (1 - pnu * pnu);
c2 = c1 * pnu;
}
else {
/* --- plane strain --- */
c = e / ((1 + pnu) * (1 - 2 * pnu));
c1 = c * (1 - pnu);
c2 = c * pnu;
}
c3 = .5 * e / (1 + pnu);
d[0][0] = c1;
d[0][1] = c2;
d[0][2] = 0;
d[1][0] = c2;
d[1][1] = c1;
d[1][2] = 0;
d[2][0] = 0;
d[2][1] = 0;
d[2][2] = c3;
return(0);
}
elstif(n,lc,s,tl,xni,d,thick,tempr,x,al,pnu,noc)
int n,lc,*noc;
double al,pnu;
double *x,*tempr,*thick,d[][3],tl[8],s[][8][8],xni[][2];
{
int i,j,k,ip;
double dte,c,xi,eta,th,dj,b[3][8],db[3][8];
/* ----- element stiffness and temperature load ----- */
for (i = 0; i < 8;i++) {
for (j = 0; j < 8; j++) {
s[n][i][j] = 0.;
}
tl[i] = 0.;
}
dte = tempr[n];
/* --- weight factor is one --- */
/* --- loop on integration points --- */
for (ip = 0; ip < 4; ip++) {
/* --- get db matrix at integration point ip --- */
xi = xni[ip][0];
eta = xni[ip][1];
dbmat(n,x,noc,thick,&th,d,b,db,&dj,xi,eta);
/* --- element stiffness matrix se --- */
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
c = 0;
for (k = 0; k < 3; k++) {
c = c + b[k][i] * db[k][j] * dj * th;
}
s[n][i][j] = s[n][i][j] + c;
}
}
/* --- determine temperature load tl --- */
c = al * dte;
if (lc == 2)
c = (1 + pnu) * c;
for (i = 0; i < 8; i++) {
tl[i] = tl[i] + th * dj * c * (db[0][i] + db[1][i]);
}
}
return(0);
}
dbmat(n,x,noc,thick,th1,d,b,db,dj1,xi,eta)
double *x,*dj1,*thick,*th1,xi,eta;
double d[][3],b[][8],db[][8];
int n,*noc;
{
int n1,n2,n3,n4,i,j,k;
double x1,y1,x2,y2,x3,y3,x4,y4,tj11,tj12,tj21,tj22,dj,c;
double th,a[3][4],g[4][8];
/* ----- db() matrix ----- */
/* --- nodal coordinates --- */
th = thick[n];
*th1 = th;
n1 = noc[4*n];
n2 = noc[4*n+1];
n3 = noc[4*n+2];
n4 = noc[4*n+3];
x1 = x[2*(n1-1)];
y1 = x[2*(n1-1)+1];
x2 = x[2*(n2-1)];
y2 = x[2*(n2-1)+1];
x3 = x[2*(n3-1)];
y3 = x[2*(n3-1)+1];
x4 = x[2*(n4-1)];
y4 = x[2*(n4-1)+1];
/* --- formation of jacobian tj --- */
tj11 = ((1 - eta) * (x2 - x1) + (1 + eta) * (x3 - x4)) / 4;
tj12 = ((1 - eta) * (y2 - y1) + (1 + eta) * (y3 - y4)) / 4;
tj21 = ((1 - xi) * (x4 - x1) + (1 + xi) * (x3 - x2)) / 4;
tj22 = ((1 - xi) * (y4 - y1) + (1 + xi) * (y3 - y2)) / 4;
/* --- determinant of the jacobian --- */
dj = tj11 * tj22 - tj12 * tj21;
*dj1 = dj;
/* --- a[3,4] matrix relates strains to --- */
/* --- local derivatives of u --- */
a[0][0] = tj22 / dj;
a[1][0] = 0;
a[2][0] = -tj21 / dj;
a[0][1] = -tj12 / dj;
a[1][1] = 0;
a[2][1] = tj11 / dj;
a[0][2] = 0;
a[1][2] = -tj21 / dj;
a[2][2] = tj22 / dj;
a[0][3] = 0;
a[1][3] = tj11 / dj;
a[2][3] = -tj12 / dj;
/* --- g[4,8] matrix relates local derivatives of u --- */
/* --- to local nodal displacements q[8] --- */
for (i = 0; i < 4; i++) {
for (j = 0; j < 8; j++) {
g[i][j] = 0;
}
}
g[0][0] = -(1 - eta) / 4;
g[1][0] = -(1 - xi) / 4;
g[2][1] = -(1 - eta) / 4;
g[3][1] = -(1 - xi) / 4;
g[0][2] = (1 - eta) / 4;
g[1][2] = -(1 + xi) / 4;
g[2][3] = (1 - eta) / 4;
g[3][3] = -(1 + xi) / 4;
g[0][4] = (1 + eta) / 4;
g[1][4] = (1 + xi) / 4;
g[2][5] = (1 + eta) / 4;
g[3][5] = (1 + xi) / 4;
g[0][6] = -(1 + eta) / 4;
g[1][6] = (1 - xi) / 4;
g[2][7] = -(1 + eta) / 4;
g[3][7] = (1 - xi) / 4;
/* --- b[3,8] matrix relates strains to q --- */
for (i = 0; i < 3; i++) {
for (j = 0; j < 8; j++) {
c = 0;
for (k = 0; k < 4; k++) {
c = c + a[i][k] * g[k][j];
}
b[i][j] = c;
}
}
/* --- db[3,8] matrix relates stresses to q[8] --- */
for (i = 0; i < 3; i++) {
for (j = 0; j < 8; j++) {
c = 0;
for (k = 0; k < 3; k++) {
c = c + d[i][k] * b[k][j];
}
db[i][j] = c;
}
}
return(0);
}
/* ----- cgsolve ----- */
cgsolve(s,f,q,ad,dd,gg,noc,cnst,nu,mpc,nmpc,beta,nd,nq,ne)
int nq, *nu, nmpc, nd, ne, *noc, mpc[][2];
double s[][8][8], *f, *q, *ad, *dd, *gg, cnst, beta[][3];
{
int i,j,n,ii,jj,i1,j1,i2,il,jl,ig,jg,igy,ilt;
int igt,jgt,jlt,iter=0;
double gg1,gg2,dad,c,al,bta;
/* ----- Conjugate Gradient Method ----- */
for (i = 0; i < nq; i++) {
gg[i] = -f[i];
dd[i] = f[i];
q[i] = 0.;
gg1 = gg1 + gg[i] * gg[i];
}
/* --- iteration loop --- */
do {
iter = iter + 1;
/* ===== element loop ===== */
for (n = 0; n < ne; n++) {
for (i = 0; i < 4; i++) {
igt = 2 * (noc[4*n + i] - 1);
ilt = 2 * i;
for (ii = 0; ii < 2; ii++){
ig = igt + ii;
il = ilt + ii;
for (j = 0; j < 4; j++) {
jgt = 2 * (noc[4*n +j] - 1);
jlt = 2 * j;
for (jj = 0; jj < 2; jj++){
jg = jgt + jj;
jl = jlt + jj;
ad[ig] = ad[ig] + s[n][il][jl] * dd[jg];
}
}
}
}
}
/* --- displacement bc --- */
for (i = 0; i < nd; i++) {
n = nu[i] - 1;
ad[n] = ad[n] + cnst * dd[n];
}
/* --- multi-point constraints --- */
for (i = 0; i < nmpc; i++) {
i1 = mpc[i][1];
i2 = mpc[i][2];
c = beta[i][1] * dd[i1] + beta[i][2] * dd[i2];
ad[i1] = ad[i1] + cnst * beta[i][1] * c;
ad[i2] = ad[i2] + cnst * beta[i][2] * c;
}
dad = 0.;
for (i = 0; i < nq; i++) {
dad = dad + dd[i] * ad[i];
}
al = gg1 / dad;
gg2 = 0.;
for (i = 0; i < nq; i++) {
gg[i] = gg[i] + al * ad[i];
q[i] = q[i] + al * dd[i];
gg2 = gg2 + gg[i] * gg[i];
}
if (gg2 > 0.00000001) {
bta = gg2 / gg1;
gg1 = gg2;
for (i = 0; i < nq; i++) {
dd[i] = -gg[i] + bta * dd[i];
}
for (i = 0; i < nq; i++) {
ad[i] = 0.;
}
}
} while (gg2 > 0.00000001);
return(0);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -