📄 quadcg.c
字号:
/******** program quadcg **********/
/* 2-d stress analysis using 4-node */
/* quadrilateral elements with temperature */
/* conjugate gradient approach */
/* t.r.chandrupatla and a.d.belegundu */
/*********************************************/
#include <stdio.h>
#include <math.h>
main()
{
FILE *fptr1, *fptr2;
int n,i,j,k,m,i1,i2,i3,ii,jj,m1,nmin,nmax,nrt,nct,it,jt;
int ip,nr,nc,in;
char dummy[81], title[81], file1[81], file2[81], file3[81];
int ne,nn,nq,nm,nd,nl,nen,ndn,ndim,npr,nmpc,lc,ipl;
int *noc, *nu, *mat, *mpc;
double *x, *thick, *pm, *u, *tempr, *s, *f, *beta;
double *ad, *dd, *gg, *q;
double xi,eta,th,bt,qe[8],c1,sv;
double c, dj, al, pnu, tld, cnst, reaction, s1, s2, s3, ang, r;
double b[3][8],d[3][3],db[3][8],str[3],tl[8],xni[4][2];
/*-------------------------------------------------------*/
printf("\n");
puts("Input file name < dr:fn.ext >: ");
gets(file1);
puts("Output file name < dr:fn.ext >: ");
gets(file2);
printf("\n");
printf(" 1) plane stress analysis\n");
printf(" 2) plane strain analysis\n");
printf(" choose <1 or 2> ");
scanf("%d", &lc);
if (lc < 1 || lc > 2)
lc = 1;
fptr1 = fopen(file1, "r");
fgets(dummy,80,fptr1);
fgets(title,80,fptr1);
fgets(dummy,80,fptr1);
fscanf(fptr1,"%d %d %d %d %d %d\n", &nn, &ne, &nm, &ndim, &nen, &ndn);
fgets(dummy, 80, fptr1);
fscanf(fptr1,"%d %d %d %d %d\n", &nd, &nl, &nmpc);
npr = 3; /* Material properties E, Nu, Alpha */
/* ----- memory allocation ----- */
x = (double *) calloc(nn*ndim, sizeof(double));
noc = (int *) calloc(ne*nen, sizeof(int));
u = (double *) calloc(nd, sizeof(double));
nu = (int *) calloc(nd, sizeof(int));
mat = (int *) calloc(ne,sizeof(int));
thick = (double *) calloc(ne, sizeof(double));
f = (double *) calloc(nn*ndn, sizeof(double));
ad = (double *) calloc(nn*ndn, sizeof(double));
dd = (double *) calloc(nn*ndn, sizeof(double));
gg = (double *) calloc(nn*ndn, sizeof(double));
q = (double *) calloc(nn*ndn, sizeof(double));
tempr = (double *) calloc(ne, sizeof(double));
pm = (double *) calloc(nm*npr, sizeof(double));
mpc = (int *) calloc(2*nmpc, sizeof(int));
beta = (double *) calloc(3*nmpc, sizeof(double));
/* ----- allocate memory for stiffness ----- */
s = (double *) calloc(ne*8*8, sizeof(double));
printf("\n\n PLOT CHOICE\n");
printf(" 1) no plot data\n");
printf(" 2) create data file for in-plane shear stress\n");
printf(" 3) create data file for von mises stress\n");
printf(" choose <1 or 2 or 3> ");
scanf("%d%*c", &ipl);
if(ipl < 1 || ipl > 3)
ipl = 1; /* --- default is no data ---*/
if(ipl > 1){
printf("Output file name < dr:fn.ext >:\n");
gets(file3);
}
/* ----- total dof is nq ----- */
nq = ndn * nn;
/* =============== read data ==================== */
/* ----- coordinates ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nn; i++){
fscanf(fptr1, "%d", &n);
for (j = 0; j < ndim; j++){
fscanf(fptr1, "%lf\n", &c);
x[ndim*(n-1)+j] = c;
}
}
/* ----- connectivity, material, thickness, temp-change ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < ne; i++) {
fscanf(fptr1,"%d", &n);
for (j = 0; j < nen; j++) {
fscanf(fptr1,"%d", &k);
noc[(n-1)*nen+j]=k;
}
fscanf(fptr1,"%d", &k);
mat[n-1] = k;
fscanf(fptr1,"%lf",&c);
thick[n-1] = c;
fscanf(fptr1,"%lf\n",&c);
tempr[n-1] = c;
}
/* ----- displacement bc ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nd; i++) {
fscanf(fptr1, "%d %lf\n", &k, &c);
nu[i] = k;
u[i] = c;
}
/* ----- component loads ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nl; i++) {
fscanf(fptr1, "%d %lf\n", &k, &c);
f[k-1] = c;
}
/* ----- material properties ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nm; i++){
fscanf(fptr1, "%d", &k);
for (j = 0; j < npr; j++) {
fscanf(fptr1, "%lf\n", &c);
pm[(k-1)*npr+j] = c;
}
}
/* ----- multipoint constraints ----- */
if (nmpc > 0)
{ fgets(dummy,80,fptr1);
for(j=0;j<nmpc;j++){
fscanf(fptr1,"%lf",&c);
beta[3*j]=c;
fscanf(fptr1,"%d",&k);
mpc[2*j]=k;
fscanf(fptr1,"%lf",&c);
beta[3*j+1]=c;
fscanf(fptr1,"%d",&k);
mpc[2*j+1]=k;
fscanf(fptr1,"%lf",&c);
beta[3*j+2]=c;
}
}
fclose (fptr1);
/* ----- global stiffness matrix -----*/
/* ----- corner nodes and integrationpoints ----- */
integ(xni);
for (n = 0; n < ne; n++) {
printf("forming stiffness matrix of element %d\n", n+1);
dmatrix(n,pm,mat,npr,&pnu,&al,lc,d);
/* --- element stiffness --- */
elstif(n,lc,s,tl,xni,d,thick,tempr,x,al,pnu,noc);
printf (".... placing in global locations\n");
for (ii = 0; ii < nen; ii++) {
nrt = ndn * (noc[nen*n + ii] - 1);
for (it = 0; it < ndn; it++) {
nr = nrt + it;
i = ndn * ii + it;
f[nr] = f[nr] + tl[i];
gg[nr] = gg[nr] + s[64*n + 8*i + i];
}
}
}
/* ----- decide penalty parameter cnst ----- */
/* ----- GG() diagonal stiffness summation */
cnst = 0.;
for (i = 0; i < nq; i++) {
if (cnst < gg[i])
cnst = gg[i];
}
cnst = cnst * 10000.;
/* ----- Modify right hand side F() for Boundary Conditions ----- */
/* ----- Displacement BC */
for (i = 0; i < nd; i++) {
k = nu[i];
f[k-1] = f[k-1] + cnst * u[i];
}
/* ----- modify for multipoint constraints ----- */
for (i = 0; i < nmpc; i++){
i1 = mpc[2*i]-1;
i2 = mpc[2*i+1]-1;
f[i1] = f[i1] + cnst*beta[3*i]*beta[3*i+2];
f[i2] = f[i2] + cnst*beta[3*i+1]*beta[3*i+2];
}
/* ----- solution of equations using conjgate gradient method ----- */
cgsolve(s,f,q,ad,dd,gg,noc,cnst,nu,mpc,nmpc,beta,nd,nq,ne);
/* ----- printing displacements ----- */
fptr1 = fopen(file2, "w");
printf("\n%s\n", title);
fprintf(fptr1, "\n%s\n", title);
if (lc == 1)
fprintf(fptr1, "plane stress analysis\n");
if (lc == 2)
fprintf(fptr1, "plane strain analysis\n");
fprintf(fptr1, "node# x-displ y-displ\n");
printf ("node# x-displ y-displ\n");
for (i = 0; i < nn; i++) {
printf(" %4d %11.4e %11.4e\n",i+1,q[2*i],q[2*i+1]);
fprintf(fptr1," %4d %11.4e %11.4e\n",i+1,q[2*i],q[2*i+1]);
}
/* ----- reaction calculation ----- */
printf("node# reaction\n");
fprintf(fptr1, "node# reaction\n");
for (i = 0; i < nd; i++) {
k = nu[i];
reaction = cnst * (u[i] - q[k-1]);
printf(" %4d %11.4e\n", k, reaction);
fprintf(fptr1, " %4d %11.4e\n", k, reaction);
}
if (ipl > 1){
fptr2 = fopen(file3, "w");
if (ipl == 2)
fprintf(fptr2, "max. in-plane Shear Stress");
if (ipl == 3)
fprintf(fptr2, "von Mises stress");
fprintf(fptr2, "(element) for data in file %s\n", file1);
}
/* ----- stress calculations ----- */
fprintf (fptr1, "elem# von mises stresses at 4 integration points\n");
/* ----- stresses at integration points ----- */
for (n = 0; n < ne; n++) {
fprintf (fptr1, "%4d ", n+1);
for (ip = 0; ip < 4; ip++) {
xi = xni[ip][0];
eta = xni[ip][1];
dmatrix(n,pm,mat,npr,&pnu,&al,lc,d);
dbmat(n,x,noc,thick,&th,d,b,db,&dj,xi,eta);
/* --- stress evaluation --- */
for (i = 0; i < nen; i++) {
in = ndn * (noc[nen*n+i] - 1);
ii = ndn * i;
for (j = 0; j < ndn; j++) {
qe[ii + j] = q[in + j];
}
}
c1 = al * tempr[n];
if (lc == 2)
c1 = c1 * (1 + pnu);
for (i = 0; i < 3; i++) {
c = 0;
for (k = 0; k < 8; k++) {
c = c + db[i][k] * qe[k];
}
str[i] = c - c1 * (d[i][0] + d[i][1]);
}
/* --- von mises stress at integration point --- */
c = 0;
if (lc == 2)
c = pnu * (str[0] + str[1]);
c1 = (str[0] - str[1]) * (str[0] - str[1]);
c1 = c1 + (str[1] - c) * (str[1] - c);
c1 = c1 + (c - str[0]) * (c - str[0]);
sv = sqrt((double)(.5 * c1 + 3 * str[2] * str[2]));
fprintf(fptr1, " %10.4e ", sv);
/* --- maximum shear stress r --- */
c = .25 * (str[0]-str[1])*(str[0]-str[1]);
c = c + str[2]*str[2];
r = sqrt((double) c);
if (ipl == 2)
fprintf(fptr2," %f ", r);
if (ipl == 3)
fprintf(fptr2, " %f ", sv);
}
fprintf(fptr1, "\n");
if (ipl > 1)
fprintf(fptr2, "\n");
}
fclose(fptr1);
printf("complete results are in file %s\n", file2);
printf("view using a text processor\n");
if (ipl > 1) {
fclose(fptr2);
printf("element stress data in file %s\n", file3);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -