📄 beamkm.c
字号:
/*==============================*/
/* beamkm .c */
/* shaft vibration analysis */
/* chandrupatla & belegundu */
/* (C) 2001 */
/* =============================*/
#include <stdio.h>
#include <math.h>
main()
{
FILE *fptr;
int n,nq,i,j,k,m,i1,i2,ii,nrt,it,nr,jj,nct,jt,nc;
char dummy[81], title[81], file1[81], file2[81];
int ne,nn,nm,nd,nl,nen,ndn,ndim,npr,nbw,nmpc;
int *noc, *nu, *mat, *mpc;
float *x, *smi, *pm, *u, *s, *beta, *gm, *area;
float c, el, eil, cnst, se[4][4], em[4][4];
printf("\n");
puts("Input file name < dr:fn.ext >: ");
gets(file1);
puts("Output file name < dr:fn.ext >: ");
gets(file2);
fptr = fopen(file1, "r");
fgets(dummy,80,fptr);
fgets(title,80,fptr);
fgets(dummy,80,fptr);
fscanf(fptr,"%d %d %d %d %d %d\n", &nn, &ne, &nm, &ndim, &nen, &ndn);
fgets(dummy, 80, fptr);
fscanf(fptr,"%d %d %d n", &nd, &nl, &nmpc);
npr = 2; /* Material Properties E, Density(Rho) */
/* ----- total dof is nq ----- */
nq = ndn*nn;
/* ----- memory allocation ----- */
x = (float *) calloc(nn*ndim, sizeof(float));
noc = (int *) calloc(ne*nen, sizeof(int));
u = (float *) calloc(nd, sizeof(float));
nu = (int *) calloc(nd, sizeof(int));
mat = (int *) calloc(ne,sizeof(int));
smi = (float *) calloc(ne, sizeof(float));
area = (float *) calloc(ne, sizeof(float));
pm = (float *) calloc(nm*npr, sizeof(float));
mpc = (int *) calloc(2*nmpc, sizeof(int));
beta = (float *) calloc(3*nmpc, sizeof(float));
/* ----- coordinates ----- */
fgets(dummy,80,fptr);
for (i = 0; i < nn; i++) {
fscanf(fptr, "%d %f\n",&n, &c);
x[n-1] = c;
}
/* ----- connectivity etc ----- */
fgets(dummy,80,fptr);
for (i = 0; i < ne; i++) {
fscanf(fptr,"%d", &n);
for (j = 0; j < nen; j++) {
fscanf(fptr,"%d", &k);
noc[(n-1)*nen+j]=k;
}
fscanf(fptr,"%d", &k);
mat[n-1] = k;
fscanf(fptr,"%f",&c);
smi[n-1] = c;
fscanf(fptr,"%f\n",&c);
area[n-1] = c;
}
/* ----- boundary conditions ----- */
fgets(dummy,80,fptr);
for (i = 0; i < nd; i++) {
fscanf(fptr, "%d %f\n", &k, &c);
nu[i] = k;
u[i] = c;
}
/* ----- component loads ----- */
fgets(dummy,80,fptr);
for (i = 0; i < nl; i++) {
fscanf(fptr, "%d %f\n", &k, &c);
/* this is dummy read */
}
/* ----- material properties ----- */
fgets(dummy,80,fptr);
for (i = 0; i < nm; i++){
fscanf(fptr, "%d", &k);
for (j = 0; j < npr; j++) {
fscanf(fptr, "%f\n", &c);
pm[(k-1)*npr+j] = c;
}
}
/* ----- multipoint constraints ----- */
if (nmpc > 0)
{ fgets(dummy,80,fptr);
for(j=0;j<nmpc;j++){
fscanf(fptr,"%f",&c);
beta[3*j]=c;
fscanf(fptr,"%d",&k);
mpc[2*j]=k;
fscanf(fptr,"%f",&c);
beta[3*j+1]=c;
fscanf(fptr,"%d",&k);
mpc[2*j+1]=k;
fscanf(fptr,"%f",&c);
beta[3*j+2]=c;
}
}
fclose (fptr);
/* ----- bandwidth evaluation ----- */
nbw = 0;
for (i = 0; i < ne; i++) {
n = ndn * (abs(noc[nen*i] - noc[nen*i+1])+1);
if (nbw < n)
nbw = n;
}
for (i = 0; i < nmpc; i++) {
n = abs(mpc[2*i] - mpc[2*i+1])+1;
if (nbw < n)
nbw = n;
}
/* ----- allocate memory for stiffness and global mass ----- */
s = (float *) calloc(nq*nbw, sizeof(float));
gm = (float *) calloc(nq*nbw, sizeof(float));
/* ----- assemble the stiffness matrix ----- */
for (n = 0; n < ne; n++) {
printf("forming stiffness and mass matrices of element... %d\n", n+1);
elkm(n,noc,mat,pm,x,smi,area,se,em);
printf (".... placing in global locations\n");
for (ii = 0; ii < nen; ii++) {
nrt = ndn * (noc[nen*n + ii] - 1);
for (it = 0; it < ndn; it++) {
nr = nrt + it;
i = ndn * ii + it;
for (jj = 0; jj < nen; jj++) {
nct = ndn * (noc[nen*n+jj] - 1);
for (jt = 0; jt < ndn; jt++) {
j = ndn * jj + jt;
nc = nct + jt - nr;
if (nc >= 0) {
s[nbw*nr+nc] = s[nbw*nr+nc] + se[i][j];
gm[nbw*nr+nc] = gm[nbw*nr+nc] + em[i][j];
}
}
}
}
}
}
/* ----- decide penalty parameter cnst ----- */
cnst = 0;
for (i = 0;i < nq; i++){
if (cnst < s[i*nbw])
cnst = s[i*nbw];
}
cnst = 10000 * cnst;
/* ----- modify for displacement boundary conditions ----- */
for (i = 0; i < nd; i++) {
k = nu[i];
s[(k-1)*nbw] = s[(k-1)*nbw] + cnst;
}
/* ----- modify for multipoint constraints ----- */
for (i = 0; i < nmpc; i++){
i1 = mpc[2*i];
i2 = mpc[2*i+1];
s[(i1-1)*nbw] = s[(i1-1)*nbw] + cnst*beta[3*i]*beta[3*i];
s[(i2-1)*nbw] = s[(i2-1)*nbw] + cnst*beta[3*i+1]*beta[3*i+1];
n=i1;
if (n > i2)
n = i2;
m = abs(i2-i1);
s[(n-1)*nbw+m] = s[(n-1)*nbw+m]+cnst*beta[3*i]*beta[3*i+1];
}
/* ----- additional springs and lumped masses ----- */
printf("spring supports < dof# = 0 exits this mode >\n");
do {
printf( " dof# ");
scanf("%d", &k);
if (k > 0) {
printf(" spring const ");
scanf("%f", &c);
s[nbw*(k-1)] = s[nbw*(k-1)] + c;
}
} while (k > 0);
printf("lumped masses < dof# = 0 exits this mode >\n");
do {
printf( " dof# ");
scanf("%d", &k);
if (k > 0) {
printf(" lumped mass ");
scanf("%f", &c);
gm[nbw*(k-1)] = gm[nbw*(k-1)] + c;
}
} while (k > 0);
/* --- print banded stiffness and mass matrices in output file --- */
fptr = fopen(file2, "w");
fprintf(fptr, "stiffness and mass for data in file %s\n", file1);
fprintf(fptr, "num. of dof bandwidth");
fprintf(fptr,"%d %d\n", nq, nbw);
fprintf(fptr, "banded stiffness matrix\n");
for (i = 0; i < nq; i++) {
for (j = 0; j < nbw; j++) {
fprintf(fptr, "%g ", s[nbw*i+j]);
}
fprintf(fptr, "\n");
}
fprintf(fptr, "banded mass matrix\n");
for (i = 0; i < nq; i++) {
for (j = 0; j < nbw; j++) {
fprintf(fptr, "%g ", gm[nbw*i+j]);
}
fprintf(fptr, "\n");
}
fprintf(fptr, "starting vector for inverse iteration\n");
for (i = 0; i < nq; i++) {
fprintf(fptr, "1 ");
}
fprintf(fptr, "\n");
fclose (fptr);
printf("global stiffness and mass matrices are in file %s\n", file2);
printf("run invitr or jacobi or geneigen program to get \n");
printf("eigenvalues and eigenvectors\n");
return(0);
}
/* ----- element stiffness and mass matrices ----- */
elkm(n,noc,mat,pm,x,smi,area,se,em)
int n,*noc,*mat;
float *pm,*x,*smi,*area,se[][4],em[][4];
{
int i1,i2,m;
float el,eil,rho,c1;
i1 = noc[2*n];
i2 = noc[2*n+1];
m = mat[n];
el = fabs(x[i1-1] - x[i2-1]);
eil = pm[2*(m-1)]* smi[n] / (el*el*el);
se[0][0] = 12 * eil;
se[0][1] = eil * 6 * el;
se[0][2] = -12 * eil;
se[0][3] = eil * 6 * el;
se[1][0] = se[0][1];
se[1][1] = eil * 4 * el * el;
se[1][2] = -eil * 6 * el;
se[1][3] = eil * 2 * el * el;
se[2][0] = se[0][2];
se[2][1] = se[1][2];
se[2][2] = eil * 12;
se[2][3] = -eil * 6 * el;
se[3][0] = se[0][3];
se[3][1] = se[1][3];
se[3][2] = se[2][3];
se[3][3] = eil * 4 * el * el;
/* --- element mass --- */
rho = pm[2*(m-1)+1];
c1 = rho * area[n] * el / 420;
em[0][0] = 156 * c1;
em[0][1] = 22 * el * c1;
em[0][2] = 54 * c1;
em[0][3] = -13 * el * c1;
em[1][0] = em[0][1];
em[1][1] = 4 * el * el * c1;
em[1][2] = 13 * el * c1;
em[1][3] = -3 * el * el * c1;
em[2][0] = em[0][2];
em[2][1] = em[1][2];
em[2][2] = 156 * c1;
em[2][3] = -22 * el * c1;
em[3][0] = em[0][3];
em[3][1] = em[1][3];
em[3][2] = em[2][3];
em[3][3] = 4 * el * el * c1;
return(0);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -