📄 ant_colony_system.m
字号:
%初始化
clear;
Alpha=1; %信息素重要程度的参数
Beta=5; %启发式因子重要程度的参数
Rho=0.5; %信息素蒸发系数
NC_max=200; %最大迭代次数
Q=100; %信息素增加强度系数
CityNum=30; %问题的规模(城市个数)
[dislist,Clist]=tsp(CityNum);
m=CityNum; %蚂蚁个数
Eta=1./dislist;%Eta为启发因子,这里设为距离的倒数
Tau=ones(CityNum,CityNum);%Tau为信息素矩阵
Tabu=zeros(m,CityNum);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,CityNum); %各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
L_ave=zeros(NC_max,1);%各代路线的平均长度
figure(1);
while NC<=NC_max %停止条件之一:达到最大迭代次数
%将m只蚂蚁放到CityNum个城市上
Randpos=[];
for i=1:(ceil(m/CityNum))
Randpos=[Randpos,randperm(CityNum)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:CityNum
for i=1:m
visited=Tabu(i,1:(j-1)); %已访问的城市
J=zeros(1,(CityNum-j+1));%待访问的城市
P=J;%待访问城市的选择概率分布
Jc=1;
for k=1:CityNum
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
L(i)=CalDist(dislist,R);
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
drawTSP(Clist,R_best(NC,:),L_best(NC),NC,0);
NC=NC+1;
%更新信息素
Delta_Tau=zeros(CityNum,CityNum);
for i=1:m
for j=1:(CityNum-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,CityNum),Tabu(i,1))=Delta_Tau(Tabu(i,CityNum),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,CityNum); %禁忌表清零
%pause;
end
%输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
figure(2);
plot([L_best L_ave]);
legend('最短距离','平均距离');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -