📄 syslib.c
字号:
* This routine initializes various features of the hardware.* Normally, it is called from usrInit() in usrConfig.c.** NOTE: This routine should not be called directly by the user.** RETURNS: N/A*/void sysHwInit (void) {/**/ /* install the IRQ/SVC interrupt stack splitting routine */ _func_armIntStackSplit = sysIntStackSplit;/*port config*/ Port_Init();/* Uart_Init(0,115200);*/ /* Uart_SendByte('\n'); for (i=0;i<0xf;i++) Uart_SendByte('a');*/ #ifdef INCLUDE_SERIAL /* initialise the serial devices */ sysSerialHwInit (); /* initialise serial data structure */#endif /* INCLUDE_SERIAL */ }/********************************************************************************* sysHwInit2 - additional system configuration and initialization** This routine connects system interrupts and does any additional* configuration necessary. Note that this is called from* sysClkConnect() in the timer driver.** RETURNS: N/A**/void sysHwInit2 (void) { static BOOL initialised = FALSE; int i; if (initialised) return;/* Uart_Printf("in sysHwInit2\n");*/ /* initialise the interrupt library and interrupt driver */ intLibInit (S2410_INT_NUM_LEVELS, S2410_INT_NUM_LEVELS, INT_MODE); s2410IntDevInit(); s2410ExcVecSet(); /* connect sys clock interrupt and auxiliary clock interrupt */ (void)intConnect (INUM_TO_IVEC (INT_LVL_TICK), sysClkInt,0); /* (void)S2410_intConnect (INUM_TO_IVEC (AUX_TIMER_INT_VEC), sysAuxClkInt, 0);*//* Uart_Printf("vxIrqIntStackBase=%x adrs=%x\n",vxIrqIntStackBase,&vxIrqIntStackBase); Uart_Printf("vxIrqIntStackEnd=%x adrs=%x\n",vxIrqIntStackEnd,&vxIrqIntStackEnd); Uart_Printf("vxSvcIntStackBase=%x adrs=%x\n",vxSvcIntStackBase,&vxSvcIntStackBase); Uart_Printf("vxSvcIntStackEnd=%x adrs=%x\n",vxSvcIntStackEnd,&vxSvcIntStackEnd);*/ for(i=0;i<0x1000;i++);/* Uart_Printf("adress 0 = %x\n", (*(unsigned *)0));*//* Uart_Printf("rINTMSK = %x\n", rINTMSK); Uart_Printf("rINTPND = %x\n", rINTPND);*/#ifdef INCLUDE_SERIAL /* connect serial interrupt */ sysSerialHwInit2();#endif /* INCLUDE_SERIAL */ initialised = TRUE; }/********************************************************************************* sysPhysMemTop - get the address of the top of physical memory** This routine returns the address of the first missing byte of memory,* which indicates the top of memory.** Normally, the user specifies the amount of physical memory with the* macro LOCAL_MEM_SIZE in config.h. BSPs that support run-time* memory sizing do so only if the macro LOCAL_MEM_AUTOSIZE is defined.* If not defined, then LOCAL_MEM_SIZE is assumed to be, and must be, the* true size of physical memory.** NOTE: Do no adjust LOCAL_MEM_SIZE to reserve memory for application* use. See sysMemTop() for more information on reserving memory.** RETURNS: The address of the top of physical memory.** SEE ALSO: sysMemTop()*/char * sysPhysMemTop (void) { static char * physTop = NULL; if (physTop == NULL) {#ifdef LOCAL_MEM_AUTOSIZE /* If auto-sizing is possible, this would be the spot. */#if defined(INCLUDE_MMU)#if defined(CPU_720T) || defined(CPU_720T_T) || \ defined(CPU_920T) || defined(CPU_920T_T) || \ defined(CPU_1020E) || defined(CPU_1022E) physTop = (char *)(LOCAL_MEM_LOCAL_ADRS + sysPhysMemDesc[0].len);#else physTop = (char *)(sysPhysMemDesc[1].len);#endif /* MMU Based CPUs */#else physTop = (char *)(LOCAL_MEM_LOCAL_ADRS + LOCAL_MEM_SIZE);#endif /* defined(INCLUDE_MMU) */#else /* LOCAL_MEM_AUTOSIZE */ /* Don't do autosizing, if size is given */ physTop = (char *)(LOCAL_MEM_LOCAL_ADRS + LOCAL_MEM_SIZE);#endif /* LOCAL_MEM_AUTOSIZE */ } return physTop; }/********************************************************************************* sysMemTop - get the address of the top of VxWorks memory** This routine returns a pointer to the first byte of memory not* controlled or used by VxWorks.** The user can reserve memory space by defining the macro USER_RESERVED_MEM* in config.h. This routine returns the address of the reserved memory* area. The value of USER_RESERVED_MEM is in bytes.** RETURNS: The address of the top of VxWorks memory.*/char * sysMemTop (void) { static char * memTop = NULL; if (memTop == NULL) { memTop = sysPhysMemTop () - USER_RESERVED_MEM; } return memTop; }LOCAL void NAND_load_block0(void);/********************************************************************************* sysToMonitor - transfer control to the ROM monitor** This routine transfers control to the ROM monitor. It is usually called* only by reboot() -- which services ^X -- and bus errors at interrupt* level. However, in some circumstances, the user may wish to introduce a* new <startType> to enable special boot ROM facilities.** RETURNS: Does not return.*/STATUS sysToMonitor ( int startType /* passed to ROM to tell it how to boot */ ) { FUNCPTR pRom; UINT32 * p = (UINT32 *)ROM_TEXT_ADRS;#ifdef INCLUDE_SERIAL sysSerialReset (); /* put serial devices into quiet state */#endif#if defined(CPU_720T) || defined(CPU_720T_T) || \ defined(CPU_740T) || defined(CPU_740T_T) || \ defined(CPU_920T) || defined(CPU_920T_T) || \ defined(CPU_940T) || defined(CPU_940T_T) || \ defined(CPU_946ES) || defined(CPU_946ES_T) VM_ENABLE(FALSE); /* disable the MMU, cache(s) and write-buffer */#endif#if defined(CPU_920T) || defined(CPU_920T_T) /* * On 920T, can have the I-cache enabled once the MMU has been * disabled, so, unlike the other processors, disabling the MMU does * not disable the I-cache. This would not be a problem, as the * 920T boot ROM initialisation code disables and flushes both caches. * However, in case we are, in fact, using a 7TDMI boot ROM, * disable and flush the I-cache here, or else the boot process may * fail. */ cacheDisable (INSTRUCTION_CACHE);#endif /* defined(CPU_920T/920T_T) */#ifndef NAND_BOOT /* * Examine ROM - if it's a VxWorks boot ROM, jump to the warm boot entry * point; otherwise jump to the start of the ROM. * A VxWorks boot ROM begins * MOV R0,#BOOT_COLD * B ... * DCB "Copyright" * We check the first and third words only. This could be tightened up * if required (see romInit.s). */ if (p[0] == 0xE3A00002 && p[2] == 0x79706F43) pRom = (FUNCPTR)(ROM_TEXT_ADRS + 4); /* warm boot address */ else pRom = (FUNCPTR)ROM_TEXT_ADRS; /* start of ROM */#else pRom = (FUNCPTR)0; NAND_load_block0(); #endif /* NAND_BOOT */ (*pRom)(startType); /* jump to boot ROM */ return OK; /* in case we ever continue from ROM monitor */ }/****************************************************************************** sysProcNumGet - get the processor number** This routine returns the processor number for the CPU board, which is* set with sysProcNumSet().** RETURNS: The processor number for the CPU board.** SEE ALSO: sysProcNumSet()*/int sysProcNumGet (void) { return 0; }/****************************************************************************** sysProcNumSet - set the processor number** Set the processor number for the CPU board. Processor numbers should be* unique on a single backplane.** NOTE* By convention, only processor 0 should dual-port its memory.** RETURNS: N/A** SEE ALSO: sysProcNumGet()*/void sysProcNumSet ( int procNum /* processor number */ ) { sysProcNum = procNum; }#ifdef INCLUDE_FLASH/******************************************************************************** sysFlashWriteEnable - enable write access to the Flash memory** This routine is used by flashMem.c to enable write access to the* Flash memory.** RETURNS: N/A*/void sysFlashWriteEnable (void) { volatile UINT32 * ebiCsr = (volatile UINT32 *)INTEGRATOR_EBI_CSR1; /* allow write access to EBI_CSR1 area (Flash ) */ *ebiCsr |= INTEGRATOR_EBI_WRITE_ENABLE; if (!(*ebiCsr & INTEGRATOR_EBI_WRITE_ENABLE)) { *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0xA05F; *ebiCsr |= INTEGRATOR_EBI_WRITE_ENABLE; *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0; } /* Enable Vpp and allow write access to Flash in system controller */ *(volatile UINT32 *)INTEGRATOR_SC_CTRLS = FL_SC_CONTROL; }/******************************************************************************** sysFlashWriteDisable - disable write access to the Flash memory** This routine is used by flashMem.c to disable write access to the* Flash memory.** RETURNS: N/A*/void sysFlashWriteDisable (void) { volatile UINT32 * ebiCsr = (volatile UINT32 *)INTEGRATOR_EBI_CSR1; /* disable write access to EBI_CSR1 area (Flash ) */ *ebiCsr &= ~INTEGRATOR_EBI_WRITE_ENABLE; if (*ebiCsr & INTEGRATOR_EBI_WRITE_ENABLE) { *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0xA05F; *ebiCsr &= ~INTEGRATOR_EBI_WRITE_ENABLE; *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0; } /* Disable Vpp and disable write access to Flash in system controller */ *(volatile UINT32 *)INTEGRATOR_SC_CTRLS = 0; }#endif /* INCLUDE_FLASH *//*-------------------------------------------------------------------------------------------------*/#ifdef NAND_BOOT#define TACLS 0 /*0 //1clk(0ns) */#define TWRPH0 3 /* 3clk(25ns) */#define TWRPH1 0 /*0 //1clk(10ns) //TACLS+TWRPH0+TWRPH1>=50ns*/#define NF_CMD(cmd) {rNFCMD=cmd;}#define NF_ADDR(addr) {rNFADDR=addr;} #define NF_nFCE_L() {rNFCONF&=~(1<<11);}#define NF_nFCE_H() {rNFCONF|=(1<<11);}#define NF_RSTECC() {rNFCONF|=(1<<12);}#define NF_RDDATA() (rNFDATA)#define NF_WRDATA(data) {rNFDATA=data;}#define NF_WAITRB() {while(!(rNFSTAT&(1<<0)));} LOCAL void sysNF_Reset(void){ int i; NF_nFCE_L(); NF_CMD(0xFF); /*reset command*/ for(i=0;i<10;i++); /*tWB = 100ns. //??????*/ NF_WAITRB(); /*wait 200~500us;*/ NF_nFCE_H();}LOCAL void sysNF_Init(void){ rNFCONF=(1<<15)|(1<<14)|(1<<13)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0); sysNF_Reset();}/*------------------------------------------------------------*/LOCAL int sysNF_ReadPage(UINT32 block,UINT32 page,UCHAR *buffer, UINT32* pageIdx){ int i; UINT32 blockPage; UCHAR ecc0,ecc1,ecc2; UCHAR *bufPt = buffer; UCHAR se[16]; UCHAR * idx = (UCHAR*)pageIdx; page=page&0x1f; blockPage=(block<<5)+page; NF_RSTECC(); /* Initialize ECC*/ NF_nFCE_L(); NF_CMD(0x00); /* Read command*/ NF_ADDR(0); /* Column = 0*/ NF_ADDR(blockPage&0xff); NF_ADDR((blockPage>>8)&0xff); /* Block & Page num.*/ NF_ADDR((blockPage>>16)&0xff); for(i=0;i<10;i++); /*wait tWB(100ns)/////??????*/ NF_WAITRB(); /* Wait tR(max 12us)*/ for(i=0;i<512;i++) { *bufPt++=NF_RDDATA(); /* Read one page*/ } ecc0=rNFECC0; ecc1=rNFECC1; ecc2=rNFECC2; for(i=0;i<16;i++) { se[i]=NF_RDDATA(); /* Read spare array*/ } idx[0] = se[11]; idx[1] = se[10]; idx[2] = se[9]; idx[3] = se[8]; NF_nFCE_H(); if(ecc0==se[0] && ecc1==se[1] && ecc2==se[2]) { return 1; } return 0;}LOCAL void NAND_load_block0(void){ UCHAR* downPt = 0; int i; UINT32 pageIdx; rINTMSK = BIT_ALLMSK; sysNF_Init(); for(i=0; i<8; i++) /* Read 8 page. 8*512 bytes*/ { sysNF_ReadPage(0, i, (UCHAR *)downPt, &pageIdx); downPt += 512; /* Next page*/ }}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -