📄 _docs_ja.utf8.txt
字号:
ファイルロックプロトコル
@advanced_1194_p
データベースが開かれるときはいつも、データベースが使用中であると他のプロセスに合図するためにロックファイルが作成されます。もしデータベースが閉じられるか、データベースを開いたプロセスが終了するなら、ロックファイルは削除されます。
@advanced_1195_p
特別なケースでは (例えば、停電のためプロセスが正常に終了されなかった場合)、 ロックファイルは作られたプロセスによって削除されません。これは、ロックファイルの存在は、 ファイルロックのための安全なプロトコルではない、ということを意味しています。 しかし、このソフトウェアはデータベースファイルを守るため、challenge-responseプロトコルを使用します。 セキュリティ (同じデータベースファイルは、同時に二つのプロセスによって開かれてはいけない) と シンプリシティー (ロックファイルはユーザーによって手動で削除される必要がない) の両方を備えるために 二つのメソッド (アルゴリズム) が実行されます。二つのメソッドは、"Fileメソッド" と "Socketメソッド" です。
@advanced_1196_h3
ファイルロックメソッド "File"
@advanced_1197_p
データベースファイルロックのデフォルトメソッドは "Fileメソッド" です。アルゴリズム:
@advanced_1198_li
ロックファイルが存在しない時は、作成されます (アトミックオペレーション File.createNewFile を使用する)。 その時、プロセスは少し (20ms) 待機し、再びファイルをチェックします。 もしファイルがこの間に変更されたら、オペレーションは中止されます。 ロックファイルを作成したすぐ後にプロセスがロックファイルを削除する時、 これはレースコンディションから保護し、三番目のプロセスはファイルを再び作成します。 二つのライターしか存在しなければ、これは起こりません。
@advanced_1199_li
もしファイルが作成されたら、ロックメソッド ("file") でランダムな番号が一緒に挿入されます。 その後、ファイルが他のスレッド/ プロセスによって削除、または 修正された時、定期的にチェックする (デフォルトでは毎秒1回) watchdogスレッドは開始されます。 これが起きる時はいつも、ファイルは古いデータに上書きされます。システムが非常に混み合っている時でさえも、 非検出の状態で処理できないロックファイルを変更するために、watchdogスレッドは最優先に実行します。 しかし、watchdogスレッドはほとんどの時間待機しているため、非常に小さなリソース (CPU time) を使用します。 また、watchdogはハードディスクから読み取りのみ行い、書き込みはしません。
@advanced_1200_li
もしロックファイルが存在し、20ms内に変更されたら、プロセスは数回 (10回以上) 待機します。 まだ変更されていたら、例外が投げられます (データベースはロックされます)。 多数の並列ライターで競合している状態を排除するためにこれが行われます。 その後、ファイルは新しいバージョンに上書きされます。 そして、スレッドは2秒間待機します。もしファイルを保護するwatchdogスレッドが存在したら、 変更は上書きし、このプロセスはデータベースをロックするために機能しなくなります。 しかし、もしwatchdogスレッドが存在しなければ、ロックファイルはこのスレッドによって 書かれたままの状態です。このケースでは、ファイルは削除され、自動的にまた作成されます。 watchdogスレッドはこのケースでは起動され、ファイルはロックされます。
@advanced_1201_p
このアルゴリズムは100以上の並列スレッドでテストされました。いくつかのケースでは、 データベースをロックしようとする多数の並列スレッドが存在する時、それらはしばらくお互いをブロックします (それらのうちどれかがファイルをロックすることができないことを意味します)。 しかし、ファイルは同時に二つのスレッドによってロックされることは決してありません。 しかし、多数の並列スレッド / プロセスを使用することは一般的な使用ケースではありません。 通常、データベースを開くことができなかったり、(速い)ループのやり直しができなかったりした場合、 アプリケーションはユーザーにエラーを投げるべきです。
@advanced_1202_h3
ファイルロックメソッド "Socket"
@advanced_1203_p
実行される二つ目のロックメカニズムがありますが、 デフォルトでは使用不可です。アルゴリズムは:
@advanced_1204_li
ロックファイルが存在しない時は、作成されます。その時、サーバーソケットは定義されたポートで開かれ、 開かれた状態を保ちます。開かれたデータベースのプロセスのポートとIPアドレスはロックファイルの中に書かれています。
@advanced_1205_li
もしロックファイルが存在し、ロックメソッドが "file" なら、ソフトウェアは "file" メソッドにスイッチします。
@advanced_1206_li
もしロックファイルが存在し、ロックメソッドが "socket" なら、プロセスはポートが使用されているかチェックします。 最初のプロセスがまだ実行されていたら、ポートは使用されていれ、このプロセスは例外を投げます (database is in use)。 最初のプロセスが失われたら (例えば、停電または、仮想マシンの異常終了のため)、ポートは解除されます。 新しいプロセスはロックファイルを削除し、再び起動します。
@advanced_1207_p
このメソッドは、活発に毎秒同じファイルをポーリングする (読み込む) watchdogスレッドを必要としていません。 このメソッドの問題は、ファイルがネットワークシェアに保存されたら、二つのプロセスは (異なるコンピューターで実行中の)、 TCP/IP接続を直接保持していなければ、同じデータベースファイルを開くことができます。
@advanced_1208_h2
SQLインジェクションに対する防御
@advanced_1209_h3
SQLインジェクションとは
@advanced_1210_p
このデータベースエンジンは "SQLインジェクション" として知られる セキュリティ脆弱性の解決策を備えています。 これは、SQLインジェクションの意味とは何か、 についての短い説明です。いくつかのアプリケーションは、エンベッドユーザーがこのように入力する SQLステートメントを構築します:
@advanced_1211_p
このメカニズムがアプリケーションのどこかで使用され、ユーザー入力が正しくないフィルター処理、 またはエンベッドなら、ユーザーはパスワード: ' OR ''=' のような (この例の場合) 特別に作られた入力を使用することによって、SQLの機能、またはステートメントに入り込むことが可能です。 このケースでは、ステートメントはこのようになります:
@advanced_1212_p
データベースに保存されたパスワードが何であっても、これは常に正しいものになります。 SQLインジェクションについての詳細は、用語集とリンク をご覧下さい。
@advanced_1213_h3
リテラルを無効にする
@advanced_1214_p
ユーザー入力が直接SQLステートメントに組み込まれなければ、 SQLインジェクションは不可能です。上記の問題の簡単な解決方法は、PreparedStatementを使用することです:
@advanced_1215_p
このデータベースは、ユーザー入力をデータベースに通す時、パラメータの使用を強制する方法を提供しています。 SQLステートメントの組み込まれたリテラルを無効にすることでこれを実行します。 次のステートメントを実行します:
@advanced_1216_p
#Afterwards, SQL statements with text and number literals are not allowed any more. That means, SQL statement of the form WHERE NAME='abc' or WHERE CustomerId=10 will fail. It is still possible to use PreparedStatements and parameters as described above. Also, it is still possible to generate SQL statements dynamically, and use the Statement API, as long as the SQL statements do not include literals. There is also a second mode where number literals are allowed: SET ALLOW_LITERALS NUMBERS. To allow all literals, execute SET ALLOW_LITERALS ALL (this is the default setting). Literals can only be enabled or disabled by an administrator.
@advanced_1217_h3
定数を使用する
@advanced_1218_p
リテラルを無効にするということは、ハードコード化された "定数" リテラルを無効にする、 ということも意味します。このデータベースは、CREATE CONSTANT コマンドを使用して定数を定義することをサポートしています。 定数はリテラルが有効であるときのみ定義することができますが、リテラルが無効の時でも使用することができます。 カラム名の名前の衝突を避けるために、定数は他のスキーマで定義できます:
@advanced_1219_p
リテラルが有効の時でも、クエリーやビューの中でハードコード化された数値リテラル、 またはテキストリテラルの代わりに、定数を使用する方がより良いでしょう。With 定数では、タイプミスはコンパイル時に発見され、ソースコードは理解、変更しやすくなります。
@advanced_1220_h3
ZERO() 関数を使用する
@advanced_1221_p
組み込み関数 ZERO() がすでにあるため、 数値 0 のための定数を作る必要はありません:
@advanced_1222_h2
#Restricting Class Loading and Usage
@advanced_1223_p
#By default there is no restriction on loading classes and executing Java code for admins. That means an admin may call system functions such as System.setProperty by executing:
@advanced_1224_p
#To restrict users (including admins) from loading classes and executing code, the list of allowed classes can be set in the system property h2.allowedClasses in the form of a comma separated list of classes or patterns (items ending with '*'). By default all classes are allowed. Example:
@advanced_1225_p
#This mechanism is used for all user classes, including database event listeners, trigger classes, user defined functions, user defined aggregate functions, and JDBC driver classes (with the exception of the H2 driver) when using the H2 Console.
@advanced_1226_h2
セキュリティプロトコル
@advanced_1227_p
次の文章は、このデータベースで使用されている セキュリティプロトコルのドキュメントです。これらの記述は非常に専門的で、 根本的なセキュリティの基本をすでに知っているセキュリティ専門家のみを対象としています。
@advanced_1228_h3
ユーザーパスワードの暗号化
@advanced_1229_p
ユーザーがデータベースに接続しようとする時、ユーザー名の組み合わせ、@、パスワードは SHA-256 を使用してハッシュ化され、このハッシュ値はデータベースに送信されます。 この手順は、クライアントとサーバー間の転送をアタッカーが聞ける (非暗号化できる) のであれば、 再使用する値からのアタッカーを試みることはありません。しかし、パスワードはクライアントとサーバー間で 暗号化されていない接続を使用している時でさえも、プレーンテキストで送信されることはありません これはもしユーザーが、異なる場面で同じパスワードを再利用しても、このパスワードはある程度まで保護されます。 詳細は"RFC 2617 - HTTP Authentication: Basic and Digest Access Authentication" もご覧下さい。
@advanced_1230_p
新しいデータベース、またはユーザーが作られた時、暗号化された安全なランダムの 新しいsalt値が生成されます。salt値のサイズは 64 bit です。 ランダムなsaltを使用することによって、多数の異なった (通常、使用された) パスワードのハッシュ値を アタッカーに再計算されるリスクが軽減します。
@advanced_1231_p
ユーザーパスワードのハッシュ値の組み合わせと (上記をご覧下さい) saltは SHA-256を使用してハッシュ化されます。 結果の値はデータベースに保存されます。ユーザーがデータベースに接続しようとする時、 データベースは、保存されたsalt値のユーザーパスワードのハッシュ値と計算されたハッシュ値を結合します。 他の製品は複数の反復 (ハッシュ値を繰り返しハッシュする) を使用していますが、 この製品ではサービス攻撃の拒絶 (アタッカーが偽のパスワードで接続しようとするところや、 サーバーがそれぞれのパスワードのハッシュ値を計算するのに長い時間費やすところ) のリスクを軽減するのに これは使用しません。理由は: もしアタッカーがハッシュ化されたパスワードにアクセスしたら、 プレーンテキストのデータにもアクセスできるため、パスワードはもはや必要ではなくなってしまいます。 もしデータが、保存されている他のコンピューターによって保護されていて、遠隔のみであるなら、 反復回数は全く必要とされません。
@advanced_1232_h3
ファイル暗号化
@advanced_1233_p
データベースファイルは二つの異なるアルゴリズムを使用して、暗号化されます: AES-128 と XTEA です (32 ラウンドを使用)。 XTEAをサポートする理由はパフォーマンス (XTEAはAESのおよそ二倍の速さです) と、AESが突然壊れた場合、代わりとなるアルゴリズムを 持っているからです。
@advanced_1234_p
ユーザーが暗号化されたデータベースに接続しようとした時、"file" という単語と、@と、 ファイルパスワードの組み合わせは、SHA-256を使用してハッシュ化されます。 このハッシュ値はサーバーに送信されます。
@advanced_1235_p
新しいデータベースファイルが作られた時、暗号化された安全なランダムの新しいsalt値が生成されます。 このsaltのサイズは 64 bitです。ファイルパスワードのハッシュとsalt値の組み合わせは、 SHA-256を使用して1024回ハッシュ化されます。反復の理由は、アタッカーが通常のパスワードの ハッシュ値を計算するよりも困難にするためです。
@advanced_1236_p
ハッシュ値の結果は、ブロック暗号アルゴリズム (AES-128、または 32ラウンドのXTEA) のためのキーとして 使用されます。その時、初期化ベクター (IV) キーは、再びSHA-256を使用してキーをハッシュ化することによって 計算されます。IVはアタッカーに知らないということを確認して下さい。秘密のIVを使用する理由は、 ウォーターマークアタック (電子透かし攻撃) を防御するためです。
@advanced_1237_p
データのブロックを保存する前に (それぞれのブロックは 8 バイト長)、次のオペレーションを 実行します: 最初に、IVはIVキー (同じblock cipher algorithmを使用して) でブロックナンバーを 暗号化することによって計算されます。このIVはXORを使用してプレーンテキストと併用されます。 結果データはAES-128、またはXTEAアルゴリズムを使用して暗号化されます。
@advanced_1238_p
復号化の時、オペレーションは反対に行われます。最初に、ブロックはキーを使用して復号化され、 その時、IVはXORを使用して復号化テキストと併用されます。
@advanced_1239_p
その結果、オペレーションのブロック暗号モードはCBT (Cipher-block chaining) ですが、 それぞれの連鎖はたったひとつのブロック長です。ECB (Electronic codebook) モードに優る利点は、 データのパターンが明らかにされない点で、複数のブロックCBCに優る利点は、 はじき出された暗号テキストビットは次のブロックではじき出されたプレーンテキストビットに伝播されないという点です。
@advanced_1240_p
データベース暗号化は、使用されていない間は (盗まれたノートパソコン等) 安全なデータベースだということを 意味します。これは、データベースが使用されている間に、アタッカーがファイルにアクセスしたというケースを 意味するのではありません。アタッカーが書き込みアクセスをした時、例えば、 彼はファイルの一部を古いバージョンに置き換え、データをこのように操ります。
@advanced_1241_p
ファイル暗号化はデータベースエンジンのパフォーマンスを低速にします。非暗号化モードと比較すると、 データベースオペレーションは、XTEAを使用する時はおよそ2.2倍長くかかり、 AESを使用する時は2.5倍長くかかります (エンベッドモード)。
@advanced_1242_h3
SSL/TLS 接続
@advanced_1243_p
遠隔SSL/TLS接続は、Java Secure Socket Extension (SSLServerSocket / SSLSocket) の使用をサポートしています。デフォルトでは、匿名のSSLは使用可能です。デフォルトの暗号化パッケージソフトは SSL_DH_anon_WITH_RC4_128_MD5 です。
@advanced_1244_h3
HTTPS 接続
@advanced_1245_p
webサーバーは、SSLServerSocketを使用したHTTP と HTTPS接続をサポートします。 簡単に開始できるように、デフォルトの自己認証された証明書がありますが、 カスタム証明書も同様にサポートされています。
@advanced_1246_h2
汎用一意識別子 (UUID)
@advanced_1247_p
このデータベースはUUIDをサポートしています。 また、暗号化強力疑似乱数ジェネレーターを使用して新しいUUIDを作成する関数をサポートしています。 同じ値をもつ二つの無作為なUUIDが存在する可能性は、確率論を使用して計算されることができます。 "Birthday Paradox" もご覧下さい。標準化された無作為に生成されたUUIDは、122の無作為なビットを保持しています。 4ビットはバージョン(無作為に生成されたUUID) に、2ビットはバリアント (Leach-Salz) に使用されます。 このデータベースは組み込み関数 RANDOM_UUID() を使用してこのようなUUIDを生成することをサポートしています。 ここに、値の数字が生成された後、二つの 同一のUUIDが生じる可能性を見積もる小さなプログラムがあります:
@advanced_1248_p
いくつかの値は:
@advanced_1249_p
人の隕石に衝突するという年に一度の危険性は、170億に一回と見積もられ、それは、確率がおよそ 0.000'000'000'06 だということを意味しています。
@advanced_1250_h2
システムプロパティから読み込まれた設定
@advanced_1251_p
いくつかのデータベースの設定は、-DpropertyName=value を使用してコマンドラインで設定することができます。 通常、これらの設定は手動で変更することは必要とされていません。設定は大文字と小文字を区別しています。 例:
@advanced_1252_p
#The current value of the settings can be read in the table INFORMATION_SCHEMA.SETTINGS.
@advanced_1253_p
#For a complete list of settings, see <a href="../javadoc/org/h2/constant/SysProperties.html">SysProperties</a> .
@advanced_1254_h2
#Setting the Server Bind Address
@advanced_1255_p
#Usually server sockets accept connections on any/all local addresses. This may be a problem on multi-homed hosts. To bind only to one address, use the system property h2.bindAddress. This setting is used for both regular server sockets and for SSL server sockets. IPv4 and IPv6 address formats are supported.
@advanced_1256_h2
用語集とリンク
@advanced_1257_th
用語
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -