⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ksizemsp.m

📁 Non-parametric density estimation
💻 M
字号:
function h = ksizeMSP(npd,noIQR)% "Maximal Smoothing Principle" estimate (Terrel '90)%    Modified similarly to ROT for multivariate densities%  Use ksizeMSP(X,1) to force use of stddev. instead of min(std,C*iqr)%       (iqr = interquartile range, C*iqr = robust estimate of stddev)%% Copyright (C) 2003 Alexander Ihler; distributable under GPL -- see README.txt  X = getPoints(npd);  N = size(X,2);  if (nargin<2) noIQR=0; end;  prop = 1.06;                  % See ksizeCalcUseful for derivation  switch(npd.type),      case 0, prop = 1.143896; % Gaussian      case 1, prop = 2.532394; % Epanetchnikov      case 2, prop = 0.847159; % Laplacian  end;    sig = std(X,0,2);            % estimate sigma (standard)  if (noIQR)    h = prop*sig*N^(-1/(4+length(sig)));  else      iqrSig = .7413*iqr(X')';     % find interquartile range sigma est.    if (max(iqrSig)==0) iqrSig=sig; end;    h = prop * min(sig,iqrSig) * N^(-1/(4+length(iqrSig)));  end;%  if (min(h) == 0) warning('Near-zero covariance => Kernel size set to 0'); end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -