📄 evaluate.m
字号:
function p = evaluate(dens,pos,varargin)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EVALUATE Evaluate the likelihood of a density estimate at given locations%% EVALUATE(X,Y [,...]) returns a vector of the likelihood of the points Y under % the density estimate X, to a percent error tolerance Tol% Y may be [Ndim x Npoints] doubles or another KDE% Optional arguments:% 'lvout' -- leave-one-out, used: evaluate(X,X,'lvout')% Tol -- evaluate up to percent error tolerance Tol (default 1e-3)% Specify zero for an exact calculation.%%% See: Gray & Moore, "Very Fast Multivariate Kernel Density Estimation using% via Computational Geometry", in Proceedings, Joint Stat. Meeting 2003%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Copyright (C) 2003 Alexander Ihler; distributable under GPL -- see README.txt lvFlag = 0; errTol = 1e-3; for i=1:nargin-2, if (strcmp(varargin{i},'lvout')) lvFlag=1; end; if (isa(varargin{i},'double')) errTol = varargin{i}; end; end; if (isa(pos,'kde')) posKDE = pos; dim = getDim(pos); else posKDE = BallTree(pos,ones(1,size(pos,2))/size(pos,2)); dim = size(pos,1); end; if (getDim(dens)~= dim) error('X and Y must have the same dimension'); end; if (lvFlag) p = DualTree(dens,errTol); else p = DualTree(dens,posKDE,errTol); end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -