📄 aepmethod4.m
字号:
%降维STAP方法的两种基本形式的比较研究(最小特征值对应的特征向量构成变化矩阵T)
clc;clear all;close all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N= 8; % number of sensors
M= 8; % number of pulse
lamda=0.03; % wavelength
V_p=90; % platform velocity
d=0.015; % spacing of sensors
PRF=12000; % pulse repetition frequency
T=1/PRF; % pulse repetition interval
H=500; % platform height
R=1000; % range
theta=asin(H/R); % depression angle
Bc=0.05; % clutter bandwidth
mm=0:1:N-1;mm=mm';
nn=0:1:M-1;nn=nn';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%V_d=20;
%fai_darget=pi/2;
%Wd_d=4*pi*V_d*cos(fai_darget)/(lamda*PRF); %目标多普勒角频率
%Ws_d=2*pi*d*cos(fai_darget)/lamda; %目标空间角频率
%bM_d=exp(j*Wd_d*mm); %M×1目标维时间导向矢量
%aN_d=exp(j*Ws_d*nn); %N×1目标维空间导向矢量
%S_d=kron(bM_d,aN_d);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% %Clutter Covariance Matrix% %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for m=1:1:M
for p=1:1:M
for i=1:1:N
for k=1:1:N
l=(m-1)*N+i;
n=(p-1)*N+k;
phi=linspace(0,2*pi,61);
D=0.5*(1+cos(2*(phi-pi/2)));
D=D.^2;
%D=1;% 有无加权影响很大!
G=1;
t_phase=exp(j*2*pi/lamda*2*V_p*(m-p)*T*cos(phi));
s_phase=exp(j*2*pi/lamda*(i-k) *d*cos(phi));
integral=D.*t_phase.*s_phase.*G;
Q(l,n)=sum(integral)/60;
%Q(l,n)=Q(l,n)*exp(-Bc*Bc*(m-p)^2/8); %杂波带宽
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q=Q+0.001*eye(N*M,N*M);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%一个干扰
phi=4*pi/6;
for m=1:1:M
p=m;
for i=1:1:N
for k=1:1:N
l=(m-1)*N+i;
n=(p-1)*N+k;
Q1(l,n)=0.25*exp(j*2*pi/lamda*(i-k)*d*cos(phi));
end
end
end
%Q=Q+Q1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fd_d=0.5;
AA=exp(j*2*pi*nn);
BB=exp(j*2*pi*mm*fd_d);
S_d=kron(AA,BB); %search channel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%特征分解AEP
Q_tr=trace(Q); %
Q_inv=inv(Q); %
Q_d=eig(Q);
Q_d=flipud(Q_d);
[V,D]=eig(Q); %对杂波协方差矩阵进行特征分解
%最小特征值对应的特征向量构成变化矩阵T
%TT=V(:,1:50);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%SINR metric method
for i=1:M*N
SINRM(1,i)=(sum(S_d.*V(:,i)))^2/Q_d(i,1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[YS,IS]=sort(SINRM);
YS=fliplr(YS);
IS=fliplr(IS);
r=50;
%for i1=1:r
%TT(:,i1)=V(:,IS(i1));
%end
%QT=TT'*Q*TT;
%QT_inv=inv(QT);
%% IF %%
fd=0.5;
for ii=1:M*N
AAi=exp(j*2*pi*nn);
BBi=exp(j*2*pi*mm*fd);
S=kron(BBi,AAi);
%IFopt(ii)=S'*Q_inv*S;
TT=V(:,1:ii);
QT=TT'*Q*TT;
QT_inv=inv(QT);
ST=TT'*S;
WT=QT_inv*ST;
IFaep(ii)=ST'*WT;
end
IFaep=20*log10(IFaep/max(IFaep));
%figure(1);
%fd=-0.5:0.01:0.5;
%plot(fd,IFopt,'-b');
%hold on;
%plot(fd,IFaep,'r');
%xlabel('归一化多普勒频率');ylabel('IF dB');
%axis([-0.5,0.5,-65,0]);
%figure(2); %信噪比尺度图
%i=1:M*N;
%plot(i,abs(SINRM)/abs(max(SINRM)));
%hold on;
%plot(i,Q_d/max(Q_d),'r');
%xlabel('number');
figure(3);
ii=1:N*M
plot(ii,IFaep,'r');
xlabel('number');ylabel('SINR dB');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -