📄 tunerf
字号:
tuneRF package:randomForest R Documentation
_T_u_n_e _r_a_n_d_o_m_F_o_r_e_s_t _f_o_r _t_h_e _o_p_t_i_m_a_l _m_t_r_y _p_a_r_a_m_e_t_e_r
_D_e_s_c_r_i_p_t_i_o_n:
Starting with the default value of mtry, search for the optimal
value (with respect to Out-of-Bag error estimate) of mtry for
randomForest.
_U_s_a_g_e:
tuneRF(x, y, mtryStart, ntreeTry=50, stepFactor=2, improve=0.05,
trace=TRUE, plot=TRUE, doBest=FALSE, ...)
_A_r_g_u_m_e_n_t_s:
x: matrix or data frame of predictor variables
y: response vector (factor for classification, numeric for
regression)
mtryStart: starting value of mtry; default is the same as in
'randomForest'
ntreeTry: number of trees used at the tuning step
stepFactor: at each iteration, mtry is inflated (or deflated) by this
value
improve: the (relative) improvement in OOB error must be by this much
for the search to continue
trace: whether to print the progress of the search
plot: whether to plot the OOB error as function of mtry
doBest: whether to run a forest using the optimal mtry found
...: options to be given to 'randomForest'
_V_a_l_u_e:
If 'doBest=FALSE' (default), it returns a matrix whose first
column contains the mtry values searched, and the second column
the corresponding OOB error.
If 'doBest=TRUE', it returns the 'randomForest' object produced
with the optimal 'mtry'.
_S_e_e _A_l_s_o:
'randomForest'
_E_x_a_m_p_l_e_s:
data(fgl, package="MASS")
fgl.res <- tuneRF(fgl[,-10], fgl[,10], stepFactor=1.5)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -