📄 outlier
字号:
outlier package:randomForest R Documentation
_C_o_m_p_u_t_e _o_u_t_l_y_i_n_g _m_e_a_s_u_r_e_s
_D_e_s_c_r_i_p_t_i_o_n:
Compute outlying measures based on a proximity matrix.
_U_s_a_g_e:
## Default S3 method:
outlier(x, cls=NULL, ...)
## S3 method for class 'randomForest':
outlier(x, ...)
_A_r_g_u_m_e_n_t_s:
x: a proximity matrix (a square matrix with 1 on the diagonal
and values between 0 and 1 in the off-diagonal positions); or
an object of class 'randomForest', whose 'type' is not
'regression'.
cls: the classes the rows in the proximity matrix belong to. If
not given, all data are assumed to come from the same class.
...: arguments for other methods.
_V_a_l_u_e:
A numeric vector containing the outlying measures. The outlying
measure of a case is computed as n / sum(squared proximity),
normalized by subtracting the median and divided by the MAD,
within each class.
_S_e_e _A_l_s_o:
'randomForest'
_E_x_a_m_p_l_e_s:
set.seed(1)
iris.rf <- randomForest(iris[,-5], iris[,5], proximity=TRUE)
plot(outlier(iris.rf), type="h",
col=c("red", "green", "blue")[as.numeric(iris$Species)])
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -