⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch12.r

📁 本程序是基于linux系统下c++代码
💻 R
字号:
#-*- R -*-## Script from Fourth Edition of `Modern Applied Statistics with S'# Chapter 12   Classificationlibrary(MASS)postscript(file="ch12.ps", width=8, height=6, pointsize=9)options(echo=T, width=65, digits=5)library(class)library(nnet)# 12.1  Discriminant Analysisir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])ir.species <- factor(c(rep("s", 50), rep("c", 50), rep("v", 50)))(ir.lda <- lda(log(ir), ir.species))ir.ld <- predict(ir.lda, dimen = 2)$xeqscplot(ir.ld, type = "n", xlab = "first linear discriminant",          ylab = "second linear discriminant")text(ir.ld, labels = as.character(ir.species[-143]),      col = 3 + unclass(ir.species), cex = 0.8)plot(ir.lda, dimen = 1)plot(ir.lda, type = "density", dimen = 1)lcrabs <- log(crabs[, 4:8])crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, each = 50)])(dcrabs.lda <- lda(crabs$sex ~ FL + RW + CL + CW, lcrabs))table(crabs$sex, predict(dcrabs.lda)$class)(dcrabs.lda4 <- lda(crabs.grp ~ FL + RW + CL + CW, lcrabs))dcrabs.pr4 <- predict(dcrabs.lda4, dimen = 2)dcrabs.pr2 <- dcrabs.pr4$post[, c("B", "O")] %*% c(1, 1)table(crabs$sex, dcrabs.pr2 > 0.5)cr.t <- dcrabs.pr4$x[, 1:2]eqscplot(cr.t, type = "n", xlab = "First LD", ylab = "Second LD")text(cr.t, labels = as.character(crabs.grp))perp <- function(x, y) {   m <- (x+y)/2   s <- - (x[1] - y[1])/(x[2] - y[2])   abline(c(m[2] - s*m[1], s))   invisible()}# For R replace @means by $meanscr.m <- lda(cr.t, crabs$sex)$meanspoints(cr.m, pch = 3, mkh = 0.3)perp(cr.m[1, ], cr.m[2, ])cr.lda <- lda(cr.t, crabs.grp)x <- seq(-6, 6, 0.25)y <- seq(-2, 2, 0.25)Xcon <- matrix(c(rep(x,length(y)),              rep(y, rep(length(x), length(y)))),,2)cr.pr <- predict(cr.lda, Xcon)$post[, c("B", "O")] %*% c(1,1)contour(x, y, matrix(cr.pr, length(x), length(y)),       levels = 0.5, labex = 0, add = T, lty=  3)for(i in c("O", "o",  "B", "b")) print(var(lcrabs[crabs.grp == i, ]))fgl.ld <- predict(lda(type ~ ., fgl), dimen = 2)$xeqscplot(fgl.ld, type = "n", xlab = "LD1", ylab = "LD2")# either# for(i in seq(along = levels(fgl$type))) {#    set <- fgl$type[-40] == levels(fgl$type)[i]#    points(fgl.ld[set,], pch = 18, cex = 0.6, col = 2 + i)}# key(text = list(levels(fgl$type), col = 3:8))# ortext(fgl.ld, cex = 0.6,     labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]])fgl.rld <- predict(lda(type ~ ., fgl, method = "t"), dimen = 2)$xeqscplot(fgl.rld, type = "n", xlab = "LD1", ylab = "LD2")# either# for(i in seq(along = levels(fgl$type))) {#   set <- fgl$type[-40] == levels(fgl$type)[i]#   points(fgl.rld[set,], pch = 18, cex = 0.6, col = 2 + i)}# key(text = list(levels(fgl$type), col = 3:8))# ortext(fgl.rld, cex = 0.6,     labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]])# 12.2  Classification theory#decrease len if you have little memory.predplot <- function(object, main="", len = 100, ...){    plot(Cushings[,1], Cushings[,2], log="xy", type="n",         xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol", main = main)    for(il in 1:4) {        set <- Cushings$Type==levels(Cushings$Type)[il]        text(Cushings[set, 1], Cushings[set, 2],             labels=as.character(Cushings$Type[set]), col = 2 + il) }    xp <- seq(0.6, 4.0, length=len)    yp <- seq(-3.25, 2.45, length=len)    cushT <- expand.grid(Tetrahydrocortisone = xp,                         Pregnanetriol = yp)    Z <- predict(object, cushT, ...); zp <- as.numeric(Z$class)    zp <- Z$post[,3] - pmax(Z$post[,2], Z$post[,1])    contour(exp(xp), exp(yp), matrix(zp, len),            add = T, levels = 0, labex = 0)    zp <- Z$post[,1] - pmax(Z$post[,2], Z$post[,3])    contour(exp(xp), exp(yp), matrix(zp, len),            add = T, levels = 0, labex = 0)    invisible()}cushplot <- function(xp, yp, Z){    plot(Cushings[, 1], Cushings[, 2], log = "xy", type = "n",         xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol")    for(il in 1:4) {        set <- Cushings$Type==levels(Cushings$Type)[il]        text(Cushings[set, 1], Cushings[set, 2],             labels = as.character(Cushings$Type[set]), col = 2 + il) }    zp <- Z[, 3] - pmax(Z[, 2], Z[, 1])    contour(exp(xp), exp(yp), matrix(zp, np),            add = T, levels = 0, labex = 0)    zp <- Z[, 1] - pmax(Z[, 2], Z[, 3])    contour(exp(xp), exp(yp), matrix(zp, np),            add = T, levels = 0, labex = 0)    invisible()}cush <- log(as.matrix(Cushings[, -3]))tp <- Cushings$Type[1:21, drop = T]cush.lda <- lda(cush[1:21,], tp); predplot(cush.lda, "LDA")cush.qda <- qda(cush[1:21,], tp); predplot(cush.qda, "QDA")predplot(cush.qda, "QDA (predictive)", method = "predictive")predplot(cush.qda, "QDA (debiased)", method = "debiased")Cf <- data.frame(tp = tp,  Tetrahydrocortisone = log(Cushings[1:21, 1]),  Pregnanetriol = log(Cushings[1:21, 2]) )cush.multinom <- multinom(tp ~ Tetrahydrocortisone  + Pregnanetriol, Cf, maxit = 250)xp <- seq(0.6, 4.0, length = 100); np <- length(xp)yp <- seq(-3.25, 2.45, length = 100)cushT <- expand.grid(Tetrahydrocortisone = xp,                     Pregnanetriol = yp)Z <- predict(cush.multinom, cushT, type = "probs")cushplot(xp, yp, Z)library(tree)cush.tr <- tree(tp ~ Tetrahydrocortisone + Pregnanetriol, Cf)plot(cush[, 1], cush[, 2], type = "n",    xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol")for(il in 1:4) { set <- Cushings$Type==levels(Cushings$Type)[il] text(cush[set, 1], cush[set, 2],      labels = as.character(Cushings$Type[set]), col = 2 + il) }par(cex = 1.5); partition.tree(cush.tr, add = T); par(cex = 1)# 12.3  Non-parametric rulesZ <- knn(scale(cush[1:21, ], F, c(3.4, 5.7)),        scale(cushT, F, c(3.4, 5.7)), tp)cushplot(xp, yp, class.ind(Z))Z <- knn(scale(cush[1:21, ], F, c(3.4, 5.7)),        scale(cushT, F, c(3.4, 5.7)), tp, k = 3)cushplot(xp, yp, class.ind(Z))# 12.4  Neural networkspltnn <- function(main, ...) {   plot(Cushings[,1], Cushings[,2], log="xy", type="n",   xlab="Tetrahydrocortisone", ylab = "Pregnanetriol", main=main, ...)   for(il in 1:4) {       set <- Cushings$Type==levels(Cushings$Type)[il]       text(Cushings[set, 1], Cushings[set, 2],          as.character(Cushings$Type[set]), col = 2 + il) }}plt.bndry <- function(size=0, decay=0, ...){   cush.nn <- nnet(cush, tpi, skip=T, softmax=T, size=size,      decay=decay, maxit=1000)   invisible(b1(predict(cush.nn, cushT), ...))}b1 <- function(Z, ...){   zp <- Z[,3] - pmax(Z[,2], Z[,1])   contour(exp(xp), exp(yp), matrix(zp, np),      add=T, levels=0, labex=0, ...)   zp <- Z[,1] - pmax(Z[,3], Z[,2])   contour(exp(xp), exp(yp), matrix(zp, np),      add=T, levels=0, labex=0, ...)}cush <- cush[1:21,]; tpi <- class.ind(tp)# functions pltnn and plt.bndry given in the scriptspar(mfrow = c(2, 2))pltnn("Size = 2")set.seed(1); plt.bndry(size = 2, col = 2)set.seed(3); plt.bndry(size = 2, col = 3)plt.bndry(size = 2, col = 4)pltnn("Size = 2, lambda = 0.001")set.seed(1); plt.bndry(size = 2, decay = 0.001, col = 2)set.seed(2); plt.bndry(size = 2, decay = 0.001, col = 4)pltnn("Size = 2, lambda = 0.01")set.seed(1); plt.bndry(size = 2, decay = 0.01, col = 2)set.seed(2); plt.bndry(size = 2, decay = 0.01, col = 4)pltnn("Size = 5, 20  lambda = 0.01")set.seed(2); plt.bndry(size = 5, decay = 0.01, col = 1)set.seed(2); plt.bndry(size = 20, decay = 0.01, col = 2)# functions pltnn and b1 are in the scriptspltnn("Many local maxima")Z <- matrix(0, nrow(cushT), ncol(tpi))for(iter in 1:20) {   set.seed(iter)   cush.nn <- nnet(cush, tpi, skip = T, softmax = T, size = 3,       decay = 0.01, maxit = 1000, trace = F)   Z <- Z + predict(cush.nn, cushT)# In R replace @ by $ in next line.   cat("final value", format(round(cush.nn$value,3)), "\n")   b1(predict(cush.nn, cushT), col = 2, lwd = 0.5)}pltnn("Averaged")b1(Z, lwd = 3)# 12.5  Support vector machineslibrary(e1071)crabs.svm <- svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1)table(true = crabs$sp, predicted = predict(crabs.svm, lcrabs))svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1, cross = 10)# 12.6  Forensic glass exampleset.seed(123)# dump random partition from S-PLUSrand <- c(9, 6, 7, 10, 8, 8, 2, 2, 10, 1, 5, 2, 3, 8, 6, 8, 2, 6, 4,4, 6, 1, 3, 2, 5, 5, 5, 3, 1, 9, 10, 2, 8, 2, 1, 6, 2, 7, 7, 8, 4, 1,9, 5, 5, 1, 4, 6, 8, 6, 5, 7, 9, 2, 1, 1, 10, 9, 7, 6, 4, 7, 4, 8, 9,9, 1, 8, 9, 5, 3, 3, 4, 8, 8, 6, 6, 9, 3, 10, 3, 10, 6, 6, 5, 10, 10,2, 10, 6, 1, 4, 7, 8, 9, 10, 7, 10, 8, 4, 6, 8, 9, 10, 1, 9, 10, 6, 8,4, 10, 8, 2, 10, 2, 3, 10, 1, 5, 9, 4, 4, 8, 2, 7, 6, 4, 8, 10, 4, 8,10, 6, 10, 4, 9, 4, 1, 6, 5, 3, 2, 4, 1, 3, 4, 8, 4, 3, 7, 2, 5, 4, 5,10, 7, 4, 2, 6, 3, 2, 2, 8, 4, 10, 8, 10, 2, 10, 6, 5, 2, 3, 2, 6, 2,7, 7, 8, 9, 7, 10, 8, 6, 7, 9, 7, 10, 3, 2, 7, 5, 6, 1, 3, 9, 7, 7, 1,8, 7, 8, 8, 8, 10, 4, 5, 9, 4, 6, 9, 6, 10, 2)con <- function(...){    print(tab <- table(...))    diag(tab) <- 0    cat("error rate = ",        round(100*sum(tab)/length(list(...)[[1]]), 2), "%\n")    invisible()}CVtest <- function(fitfn, predfn, ...){    res <- fgl$type    for (i in sort(unique(rand))) {        cat("fold ", i, "\n", sep = "")        learn <- fitfn(rand != i, ...)        res[rand == i] <- predfn(learn, rand == i)    }    res}res.multinom <- CVtest(  function(x, ...) multinom(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ], type = "class"),  maxit = 1000, trace = F )con(true = fgl$type, predicted = res.multinom)res.lda <- CVtest(  function(x, ...) lda(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ])$class )con(true = fgl$type, predicted = res.lda)fgl0 <- fgl[ , -10] # drop type{ res <- fgl$type  for (i in sort(unique(rand))) {      cat("fold ", i ,"\n", sep = "")      sub <- rand == i      res[sub] <- knn(fgl0[!sub, ], fgl0[sub, ], fgl$type[!sub],                      k = 1)  }  res } -> res.knn1con(true = fgl$type, predicted = res.knn1)res.lb <- knn(fgl0, fgl0, fgl$type, k = 3, prob = T, use.all = F)table(attr(res.lb, "prob"))library(rpart)res.rpart <- CVtest(  function(x, ...) {    tr <- rpart(type ~ ., fgl[x,], ...)    cp <- tr$cptable    r <- cp[, 4] + cp[, 5]    rmin <- min(seq(along = r)[cp[, 4] < min(r)])    cp0 <- cp[rmin, 1]    cat("size chosen was", cp[rmin, 2] + 1, "\n")    prune(tr, cp = 1.01*cp0)  },  function(obj, x)    predict(obj, fgl[x, ], type = "class"),  cp = 0.001)con(true = fgl$type, predicted = res.rpart)fgl1 <- fglfgl1[1:9] <- lapply(fgl[, 1:9], function(x)               {r <- range(x); (x - r[1])/diff(r)})CVnn2 <- function(formula, data,                  size = rep(6,2), lambda = c(0.001, 0.01),                  nreps = 1, nifold = 5, verbose = 99, ...){    CVnn1 <- function(formula, data, nreps=1, ri, verbose,  ...)    {        truth <- data[,deparse(formula[[2]])]        res <-  matrix(0, nrow(data), length(levels(truth)))        if(verbose > 20) cat("  inner fold")        for (i in sort(unique(ri))) {            if(verbose > 20) cat(" ", i,  sep="")            for(rep in 1:nreps) {                learn <- nnet(formula, data[ri !=i,], trace = F, ...)                res[ri == i,] <- res[ri == i,] +                    predict(learn, data[ri == i,])            }        }        if(verbose > 20) cat("\n")        sum(as.numeric(truth) != max.col(res/nreps))    }    truth <- data[,deparse(formula[[2]])]    res <-  matrix(0, nrow(data), length(levels(truth)))    choice <- numeric(length(lambda))    for (i in sort(unique(rand))) {        if(verbose > 0) cat("fold ", i,"\n", sep="")        ri <- sample(nifold, sum(rand!=i), replace=T)        for(j in seq(along=lambda)) {            if(verbose > 10)                cat("  size =", size[j], "decay =", lambda[j], "\n")            choice[j] <- CVnn1(formula, data[rand != i,], nreps=nreps,                               ri=ri, size=size[j], decay=lambda[j],                               verbose=verbose, ...)        }        decay <- lambda[which.is.max(-choice)]        csize <- size[which.is.max(-choice)]        if(verbose > 5) cat("  #errors:", choice, "  ") #        if(verbose > 1) cat("chosen size = ", csize,                            " decay = ", decay, "\n", sep="")        for(rep in 1:nreps) {            learn <- nnet(formula, data[rand != i,], trace=F,                          size=csize, decay=decay, ...)            res[rand == i,] <- res[rand == i,] +                predict(learn, data[rand == i,])        }    }    factor(levels(truth)[max.col(res/nreps)], levels = levels(truth))}if(F) { # only run this if you have time to waitres.nn2 <- CVnn2(type ~ ., fgl1, skip = T, maxit = 500, nreps = 10)con(true = fgl$type, predicted = res.nn2)}res.svm <- CVtest(  function(x, ...) svm(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ]),  cost = 100, gamma = 1 )con(true = fgl$type, predicted = res.svm)svm(type ~ ., data = fgl, cost = 100, gamma = 1, cross = 10)cd0 <- lvqinit(fgl0, fgl$type, prior = rep(1, 6)/6, k = 3)cd1 <- olvq1(fgl0, fgl$type, cd0)con(true = fgl$type, predicted = lvqtest(cd1, fgl0))CV.lvq <- function(){    res <- fgl$type    for(i in sort(unique(rand))) {        cat("doing fold", i, "\n")        cd0 <- lvqinit(fgl0[rand != i,], fgl$type[rand != i],                       prior = rep(1, 6)/6, k = 3)        cd1 <- olvq1(fgl0[rand != i,], fgl$type[rand != i], cd0)        cd1 <- lvq3(fgl0[rand != i,], fgl$type[rand != i],                    cd1, niter = 10000)        res[rand == i] <- lvqtest(cd1, fgl0[rand == i, ])    }    res}con(true = fgl$type, predicted = CV.lvq())# 12.7  Calibration plotsCVprobs <- function(fitfn, predfn, ...){    res <- matrix(, 214, 6)    for (i in sort(unique(rand))) {        cat("fold ", i, "\n", sep = "")        learn <- fitfn(rand != i, ...)        res[rand == i, ] <- predfn(learn, rand == i)    }    res}probs.multinom <- CVprobs(  function(x, ...) multinom(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ], type = "probs"),  maxit = 1000, trace = F )probs.yes <- as.vector(class.ind(fgl$type))probs <- as.vector(probs.multinom)par(pty = "s")plot(c(0, 1), c(0, 1), type = "n", xlab = "predicted probability",     ylab = "", xaxs = "i", yaxs = "i", las = 1)rug(probs[probs.yes == 0], 0.02, side = 1, lwd = 0.5)rug(probs[probs.yes == 1], 0.02, side = 3, lwd = 0.5)abline(0, 1)newp <- seq(0, 1, length = 100)lines(newp, predict(loess(probs.yes ~ probs, span = 1), newp))# End of ch12

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -