📄 housing.html
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>R: Frequency Table from a Copenhagen Housing Conditions Survey</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="../../R.css">
</head><body>
<table width="100%" summary="page for housing {MASS}"><tr><td>housing {MASS}</td><td align="right">R Documentation</td></tr></table>
<h2>Frequency Table from a Copenhagen Housing Conditions Survey</h2>
<h3>Description</h3>
<p>
The <code>housing</code> data frame has 72 rows and 5 variables.
</p>
<h3>Usage</h3>
<pre>
housing
</pre>
<h3>Format</h3>
<dl>
<dt><code>Sat</code></dt><dd>Satisfaction of householders with their present housing
circumstances, (High, Medium or Low, ordered factor).
</dd>
<dt><code>Infl</code></dt><dd>Perceived degree of influence householders have on the
management of the property (High, Medium, Low).
</dd>
<dt><code>Type</code></dt><dd>Type of rental accommodation, (Tower, Atrium, Apartment, Terrace).
</dd>
<dt><code>Cont</code></dt><dd>Contact residents are afforded with other residents, (Low, High).
</dd>
<dt><code>Freq</code></dt><dd>Frequencies: the numbers of residents in each class.
</dd></dl>
<h3>Source</h3>
<p>
Madsen, M. (1976)
Statistical analysis of multiple contingency tables. Two examples.
<EM>Scand. J. Statist.</EM> <B>3</B>, 97–106.
</p>
<p>
Cox, D. R. and Snell, E. J. (1984)
<EM>Applied Statistics, Principles and Examples</EM>.
Chapman & Hall.
</p>
<h3>References</h3>
<p>
Venables, W. N. and Ripley, B. D. (2002)
<EM>Modern Applied Statistics with S.</EM> Fourth edition. Springer.
</p>
<h3>Examples</h3>
<pre>
options(contrasts = c("contr.treatment", "contr.poly"))
# Surrogate Poisson models
house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family = poisson,
data = housing)
summary(house.glm0, cor = FALSE)
addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test = "Chisq")
house.glm1 <- update(house.glm0, . ~ . + Sat*(Infl+Type+Cont))
summary(house.glm1, cor = FALSE)
1 - pchisq(deviance(house.glm1), house.glm1$df.residual)
dropterm(house.glm1, test = "Chisq")
addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test = "Chisq")
hnames <- lapply(housing[, -5], levels) # omit Freq
newData <- expand.grid(hnames)
newData$Sat <- ordered(newData$Sat)
house.pm <- predict(house.glm1, newData,
type = "response") # poisson means
house.pm <- matrix(house.pm, ncol = 3, byrow = TRUE,
dimnames = list(NULL, hnames[[1]]))
house.pr <- house.pm/drop(house.pm %*% rep(1, 3))
cbind(expand.grid(hnames[-1]), round(house.pr, 2))
# Iterative proportional scaling
loglm(Freq ~ Infl*Type*Cont + Sat*(Infl+Type+Cont), data = housing)
# multinomial model
library(nnet)
(house.mult<- multinom(Sat ~ Infl + Type + Cont, weights = Freq,
data = housing))
house.mult2 <- multinom(Sat ~ Infl*Type*Cont, weights = Freq,
data = housing)
anova(house.mult, house.mult2)
house.pm <- predict(house.mult, expand.grid(hnames[-1]),
type = "probs")
cbind(expand.grid(hnames[-1]), round(house.pm, 2))
# proportional odds model
house.cpr <- apply(house.pr, 1, cumsum)
logit <- function(x) log(x/(1-x))
house.ld <- logit(house.cpr[2, ]) - logit(house.cpr[1, ])
(ratio <- sort(drop(house.ld)))
mean(ratio)
(house.plr <- polr(Sat ~ Infl + Type + Cont,
data = housing, weights = Freq))
house.pr1 <- predict(house.plr, expand.grid(hnames[-1]),
type = "probs")
cbind(expand.grid(hnames[-1]), round(house.pr1, 2))
Fr <- matrix(housing$Freq, ncol = 3, byrow = TRUE)
2*sum(Fr*log(house.pr/house.pr1))
house.plr2 <- stepAIC(house.plr, ~.^2)
house.plr2$anova
</pre>
<hr><div align="center">[Package <em>MASS</em> version 7.2-44 <a href="00Index.html">Index]</a></div>
</body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -