📄 modal_eom_solve.m
字号:
function [UUU,VVV,V_dot] = modal_eom_solve(h,omega,Modal_LoadM,time)
% The n x n matrix 'h' defines the modal damping ratios:
% h = diag( [zeta_1 zeta_2 ... zeta_n] )
% The n x n matrix 'omega' defines the natural frequencies
% omega = diag( [omega_1 omega_2 ... omega_n] )
% The n x s matrix 'Modal_LoadM' defines the time series of generalized modal forces
% Modal_LoadM = [ g_1(t_1) g_1(t_2) ... g_1(t_s); ...
% g_2(t_1) g_2(t_2) ... g_2(t_s); ...
% ... ...
% g_n(t_1) g_n(t_2) ... g_n(t_s)]
n = length(omega); % number of modes
s = length(Modal_LoadM); % number of samples
T = max(time)-min(time); % record duration
dt = T/(s-1); % time step -- MUST BE CONSTANT
% Initialize modal displacement, velocity, and acceleration matrices:
UUU = zeros(n,s);
VVV = zeros(n,s);
V_dot = zeros(n,s);
for iii = 1:n
wn = omega(iii,iii); % natural frequency
zeta = h(iii,iii); % damping ratio
wd = wn*sqrt(1-zeta^2); % damped frequency
E = exp(-zeta.*wn.*dt);
K = dt.*wd;
C = E.*cos(K);
S = E.*sin(K);
Sp = S./K;
% Calculate filter coefficients
B0 = (2*zeta*(C-1)+(2*zeta^2-1)*S/sqrt(1-zeta^2)+dt*wn)/(dt*wn);
B1 = (-2*C*dt*wn+2*zeta*(1-E^2)-2*(2*zeta^2-1)*S/sqrt(1-zeta^2))/(dt*wn);
B2 = (E^2*(dt*wn+2*zeta)-2*zeta*C+(2*zeta^2-1)*S/sqrt(1-zeta^2))/(dt*wn);
A0 = 1; % A0 = constant = 1, see help filter
A1 = -2.*C;
A2 = E.^2;
UUU(iii,:) = filter([B0 B1 B2],[A0 A1 A2],Modal_LoadM(iii,:))/wn^2; % modal displacements
% Calculate filter coefficients for modal velocities:
B0 = (-dt*wn*Sp+2*zeta*(1-C)+(1-2*zeta^2)*S/sqrt(1-zeta^2))/(2*dt*zeta*wn);
B1 = (2*dt*wn*Sp-2*zeta*(1-E^2)-2*(1-2*zeta^2)*S/sqrt(1-zeta^2))/(2*dt*zeta*wn);
B2 = (-dt*wn*Sp-2*zeta*E^2+2*zeta*C+(1-2*zeta^2)*S/sqrt(1-zeta^2))/(2*dt*zeta*wn);
% Compute modal velocities
VVV(iii,:) = filter([B0 B1 B2],[A0 A1 A2], Modal_LoadM(iii,:))/wn;
% Obtain modal accelerations from equation of motion
V_dot(iii,:) = Modal_LoadM(iii,:) - 2*zeta*wn*VVV(iii,:) - wn^2*UUU(iii,:);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -