📄 kernelskf.m
字号:
% KERNELSKF kernel Schlesinfer-Kozinec's algorithm. % [Alpha,bias,sol]=kernelskf(data,labels,stop,ker,arg,tmax,C) % [Alpha,bias,sol,t,kercnt,margin,trnerr]=kernelskf(...) % % KERNELSKF kernel Schlesinger-Kozinec's algorithm solves the % Support vector Machines problem with quadratic cost function % for classification violations.%% Inputs:% data [dim x N] training patterns% labels [1 x N] labels of training patterns% stop [1 x 2] if stop(1) == 1 then stopping condition m*-m < stop(2) % is used else stopping condition (m*-m)/m < stop(2) is used. % Where m* is the optimial margin and m is the margin of found% hyperplane (in the given feature space).% ker [string] kernel, see 'help kernel'.% arg [...] argument of given kernel, see 'help kernel'.% tmax [int] maximal number of iterations.% C [real] trade-off between margin and training error.% % Outputs:% Alpha [1xN] Lagrangians defining found decision rule.% bias [real] bias (threshold) of found decision rule.% sol [int] 1 solution is found% 0 algorithm stoped (t == tmax) before converged.% -1 hyperplane with margin greater then epsilon % does not exist.% t [int] number of iterations.% kercnt [int] number of kernel evaluations.% margin [real] margin between classes.% trnerr [real] training error.%% See also SVM.%% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz% Written Vojtech Franc (diploma thesis) 02.11.1999, 13.4.2000% Modifications% 19-Nov-2001, V.Franc%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -