📄 smo.m
字号:
% SMO Sequential Minimal Optimization for SVM (L1).% [Alpha,bias,nsv,kercnt,trnerr,margin]=smo(data,labels,ker,arg,C)%% [...]=smo(data,labels,ker,arg,C,eps,tol,Alpha,bias )%% To make executable file run 'mex smo.c kernel.c'.%% Obligatory input:% data [DxN] N training patterns in D-dimensional space.% labels [1xN] labels of training patterns (1 - 1st, 2 - 2nd class ).% ker [string] identifier of kernel: 'linear', 'poly', 'rbf'.% arg [...] argument of the kernel: no meaning for 'linear', % degree of polynomial for 'poly', parameter sigma for 'rbf'.% C [real] or [2 x real] one trade-off constant for both the classes% or two constants for the first and the second class.% bias [real] initial value of the threshold. If not given then SMO% starts from bias = 0.%% Optional input:% eps [real] tolerance of KKT-conditions fulfilment (default 0.001).% tol [real] minimal change of optimized Lagrangeians (default 0.001).% Alpha [1xN] initial values of optimized Lagrangeians. If not given% then SMO starts from Alpha = zeros(1,N) and bias=0.%% Mandatory outputs:% Alpha [1 x N] found Lagrangeian multipliers.% bias [real] found bias.%% Optional outputs:% nsv [real] number of Support Vectors (number of Alpha > ZERO_LIM).% kercnt [int] number of kernel evalutions.% trnerr [real] classification error on training data.% margin [real] margin between classes and the found hyperplane.%% See also SMOKER, SVMCLASS2.%% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz.%% Modifications:% 26-Nov-2001, V.Franc% 23-Oct-2001, V.Franc% 21-Oct-2001, V.Franc
% 16-October-2001, V.Franc% 30-September-2001, V.Franc, comments.% 26-September-2001, V.Franc, comments changed% 19-September-2001, V. Franc, computation of nsv and nerr added.% 17-September-2001, V. Franc, created
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -