📄 kdist.m
字号:
function [d, data2]=kdist(x,data,Alpha,ker,arg, data2)% KDIST distance between vectors in a feature space.% [d]=kdist(x,data,Alpha,ker,arg)% [d]=kdist(x,data,Alpha,ker,arg, data2)% % Computes distance between vectors Phi(x) and % sum( Alpha(i)*Phi(data(:,i))) in a feature space induced% by a given kernel(a,b)=Phi(a)'*Phi(b).%% Inputs:% x [dim x l] the first vector(s) in the input space.% data [dim x n] data from the input space describing the second vector % in the feture space.% Alpha [1 x n] weights of the data.% ker [string] kernel identifier; see help kernel.% arg [...] kernel argument.% % Voluntary input:% data2 [real] Alpha'*kmatrix(data,ker,arg)*Alpha.%% Output:% d [1 x l] distance between in the feature space.% data2 [real] see above.% % Modifications:% 13-sep-2002, VF% 15-jun-2002, VF[dim,num]=size(x);x2 = diag(kmatrix( x, ker, arg));if nargin < 6, data2 = Alpha(:)'*kmatrix( data, ker, arg)*Alpha(:);endxdata = kmatrix( x, data, ker, arg);d = sqrt(x2 - 2*xdata*Alpha(:) + repmat(data2,num,1) )';return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -