⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 m2osmo.m~

📁 this a SVM toolbox,it is very useful for someone who just learn SVM.In order to be undestood easily,
💻 M~
字号:
function [model]=m2osmo( data, labels, ker, arg, C, eps, tol)% M2OSMO Multi-class to one-class SVM translation and using SMO.% [model]=m2osmo( data, labels, ker, arg, C, eps, tol) %% Use 'oaaclass' for classification.%% Inputs:%  data [dim x N] training patterns%  labels [1 x N] labels of training patterns%  ker [string] kernel, see 'help kernel'.%  arg [...] argument of given kernel, see 'help kernel'.%  C [real] trade-off between margin and training error.%  eps [real] minimal change in the optimized criterion.%  tol  [real] stopping condition.% % Output:%  model [struct] contains found multi-class SVM classifier.%% See also%  OAACLASS% Modifications:% 9-july-2002, VFif nargin < 5,  error('Not enough input aruments.');endif nargin < 6,  eps= 0.001;end  if nargin < 7,  tol=0.001;end%---------------------------------[dim,num_data]=size(data);num_classes=max(labels);%---------------------------------[Alpha,bias,kercnt] = m2o_smo(data,labels,ker,arg,C,eps,tol);model.name = 'Multi-To-One class, SVM classifier';model.num_classes = num_classes;model.num_rules = num_classes;model.rule = cell(model.num_rules);for i=1:num_classes,  model.rule{i}.Alpha = Alpha(i,:);  model.rule{i}.bias = bias(i);endmodel.SVM.C = C;model.SVM.kernel = ker;model.SVM.arg = arg;model.trn_data = data;model.trn_labels = labels;model.kercnt = kercnt;%model.trnerr = ;model.nsv = length(find(sum(Alpha)));  return;% EOF

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -