📄 m2osmo.m~
字号:
function [model]=m2osmo( data, labels, ker, arg, C, eps, tol)% M2OSMO Multi-class to one-class SVM translation and using SMO.% [model]=m2osmo( data, labels, ker, arg, C, eps, tol) %% Use 'oaaclass' for classification.%% Inputs:% data [dim x N] training patterns% labels [1 x N] labels of training patterns% ker [string] kernel, see 'help kernel'.% arg [...] argument of given kernel, see 'help kernel'.% C [real] trade-off between margin and training error.% eps [real] minimal change in the optimized criterion.% tol [real] stopping condition.% % Output:% model [struct] contains found multi-class SVM classifier.%% See also% OAACLASS% Modifications:% 9-july-2002, VFif nargin < 5, error('Not enough input aruments.');endif nargin < 6, eps= 0.001;end if nargin < 7, tol=0.001;end%---------------------------------[dim,num_data]=size(data);num_classes=max(labels);%---------------------------------[Alpha,bias,kercnt] = m2o_smo(data,labels,ker,arg,C,eps,tol);model.name = 'Multi-To-One class, SVM classifier';model.num_classes = num_classes;model.num_rules = num_classes;model.rule = cell(model.num_rules);for i=1:num_classes, model.rule{i}.Alpha = Alpha(i,:); model.rule{i}.bias = bias(i);endmodel.SVM.C = C;model.SVM.kernel = ker;model.SVM.arg = arg;model.trn_data = data;model.trn_labels = labels;model.kercnt = kercnt;%model.trnerr = ;model.nsv = length(find(sum(Alpha))); return;% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -