⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pkernelpca.m

📁 this a SVM toolbox,it is very useful for someone who just learn SVM.In order to be undestood easily,
💻 M
字号:
function pkernelpca(T,features,ker,arg,contour_num)% PKERNELPCA plots Kernel-PCA feature extraction for 2D data.%  pkernelpca(T,features,ker,arg)% % The Kernel-PCA non-linearly map the data into high dimensional 
% space and then reduces their dimension by linear (standard) PCA.
%
% The points in the original space which have the equal value of 
% extracted feature form contours. The contours show main variance 
% in the data. These contours can be displayed by pkernelpca 
% function.
% 
% Input:
%  T [NxL] L training patterns in N-dimensional space.
%  features [...] enumeration of extracted features to be displayed. 
%     For example, [1,2,7] means the 1st, 2nd and the 7th feature. 
%     The features are numbered according to their eigenvalues.
%  ker [string] kernel identifier, see help kernel.
%  arg [...] arguments of given kernel.
%  contour_num [1x1] number of contours for one feature. Default is 8.
%  
% See also KERNELPCA, KERNEL, SPCA.
%
% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac
% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz
% Modifications:% 8-July-2001, V.Franc % Default number of contours.if nargin < 5,  contour_num = 8;endhold on;xgrid = 25;ygrid = 25;% Testing points - grid [xgrid x ygrid].w = axis;xrange=w(1):(w(2)-w(1))/xgrid:w(2);yrange=w(3):(w(4)-w(3))/ygrid:w(4);[X,Y] = meshgrid(xrange,yrange);Xtst=[reshape(X,1,prod(size(X)));reshape(Y,1,prod(size(Y)))];% Call Kernel-PCAZ = kernelpca(Xtst, T, max(features), ker, arg );% Plot contours of selected features.for i=features,  map = reshape(Z(i,:), length(yrange), length(xrange));  contour(xrange, yrange, map, contour_num, color(i));endhold off;return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -