📄 pkernelpca.m
字号:
function pkernelpca(T,features,ker,arg,contour_num)% PKERNELPCA plots Kernel-PCA feature extraction for 2D data.% pkernelpca(T,features,ker,arg)% % The Kernel-PCA non-linearly map the data into high dimensional
% space and then reduces their dimension by linear (standard) PCA.
%
% The points in the original space which have the equal value of
% extracted feature form contours. The contours show main variance
% in the data. These contours can be displayed by pkernelpca
% function.
%
% Input:
% T [NxL] L training patterns in N-dimensional space.
% features [...] enumeration of extracted features to be displayed.
% For example, [1,2,7] means the 1st, 2nd and the 7th feature.
% The features are numbered according to their eigenvalues.
% ker [string] kernel identifier, see help kernel.
% arg [...] arguments of given kernel.
% contour_num [1x1] number of contours for one feature. Default is 8.
%
% See also KERNELPCA, KERNEL, SPCA.
%
% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac
% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz
% Modifications:% 8-July-2001, V.Franc % Default number of contours.if nargin < 5, contour_num = 8;endhold on;xgrid = 25;ygrid = 25;% Testing points - grid [xgrid x ygrid].w = axis;xrange=w(1):(w(2)-w(1))/xgrid:w(2);yrange=w(3):(w(4)-w(3))/ygrid:w(4);[X,Y] = meshgrid(xrange,yrange);Xtst=[reshape(X,1,prod(size(X)));reshape(Y,1,prod(size(Y)))];% Call Kernel-PCAZ = kernelpca(Xtst, T, max(features), ker, arg );% Plot contours of selected features.for i=features, map = reshape(Z(i,:), length(yrange), length(xrange)); contour(xrange, yrange, map, contour_num, color(i));endhold off;return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -