📄 kpcademo1.m~
字号:
echo on;
% KPCADEMO1 demo on the Kernel-PCA.
% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac
% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz
% Modifications:% 8-July-2001, V.Franc
% First, we load data from file. Use 'creatset' to interactively
% create your own data in 2D.
pause; % press anykey
data=load('pcaexam2');
% The Kernel-PCA non-linearly map the data into high dimensional
% space and then reduces their dimension by linear (standard) PCA.
%
% The points in the original space which have the equal value of
% extracted feature form contours. The contours show main variance
% in the data. These contours can be displayed by pkernelpca function.
%
% We display two features of the original 2D space and then
% two features (principal components) after linear, RBF (sigma =1)
% and polynomial (d=2) mapping. The first component si denoted by
% red and the second by blue color.
pause; % press anykey
% Plot the points with the equal coordinates x and y
figure;
subplot(2,2,1);
hold on;
ppoints(data.X,data.I);
title('Orginal space');
w = axis;
for i = w(1):(w(2)-w(1))/8:w(2),
plot([i i],[w(3),w(4)],color(1));
echo off;
end
for j = w(3):(w(4)-w(3))/8:w(4),
plot([w(1) w(2)],[j j],color(2));
end
echo on;
% Linear PCAsubplot(2,2,2);
hold on;
ppoints(data.X,data.I); % display data
title('Linear PCA');
pkernelpca(data.X,[1,2],'linear',[]);
% RBF mapping, PCA
subplot(2,2,3);
hold on;
ppoints(data.X,data.I); % display data
title('RBF(sigma = 1), PCA');
pkernelpca(data.X,[1,2],'rbf',[0.5]);
% Polynomial mapping, PCA
subplot(2,2,4);
hold on;
ppoints(data.X,data.I); % display data
title('Polynom (d = 2), PCA');
pkernelpca(data.X,[1,2],'poly',[2]);
echo off;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -