⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qa_filter_delay_fc.py

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 PY
📖 第 1 页 / 共 2 页
字号:
                            (-0.5877840518951416        +0.87856143712997437j),                             (-0.95105588436126709       +0.35447561740875244j),                             (-0.95105588436126709       -0.26055556535720825j),                             (-0.5877838134765625        -0.77606213092803955j),                             (-8.7774534307527574e-09    -0.96460390090942383j),                             (0.58778399229049683        -0.78470128774642944j),                             (0.95105588436126709        -0.28380891680717468j),                             (0.95105588436126709        +0.32548999786376953j),                             (0.5877838134765625         +0.82514488697052002j),                             (1.4629089051254596e-08     +1.0096219778060913j),                             (-0.5877840518951416        +0.81836479902267456j),                             (-0.95105588436126709       +0.31451958417892456j),                             (-0.95105588436126709       -0.3030143678188324j),                             (-0.5877838134765625        -0.80480599403381348j),                             (-1.7554906861505515e-08    -0.99516552686691284j),                             (0.58778399229049683        -0.80540722608566284j),                             (0.95105582475662231        -0.30557557940483093j),                             (0.95105588436126709        +0.31097668409347534j),                             (0.5877838134765625         +0.81027895212173462j),                             (2.3406542482007353e-08     +1.0000816583633423j),                             (-0.5877840518951416        +0.80908381938934326j),                             (-0.95105588436126709       +0.30904293060302734j),                             (-0.95105588436126709       -0.30904296040534973j),                             (-0.5877838134765625        -0.80908387899398804j),                             (-2.6332360292258272e-08    -1.0000815391540527j),                             (0.58778399229049683        -0.80908381938934326j),                             (0.95105582475662231        -0.30904299020767212j),                             (0.95105588436126709        +0.30904293060302734j),                             (0.5877838134765625         +0.80908381938934326j),                             (3.218399768911695e-08      +1.0000815391540527j))                 fg = self.fg        sampling_freq = 100        ntaps = 51        src1 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE,                               sampling_freq * 0.10, 1.0)        head = gr.head (gr.sizeof_float, int (ntaps + sampling_freq * 0.10))        dst2 = gr.vector_sink_c ()        # calculate taps        taps = gr.firdes_hilbert (ntaps)        hd = gr.filter_delay_fc (taps)        fg.connect (src1, head)        fg.connect (head, (hd,0))        fg.connect (head, (hd,1))        fg.connect (hd,dst2)        fg.run ()        # get output        result_data = dst2.data ()        self.assertComplexTuplesAlmostEqual (expected_result, result_data, 5)    def test_003_filter_delay_two_inputs (self):        # give two different inputs        # expected result        expected_result =         (                          -0.0020331963896751404j,                                                              -0.0016448829555884004j,                                                              -0.0032375147566199303j,                                                              -0.0014826074475422502j,                                                              -0.0033034090884029865j,                                                              -0.00051144487224519253j,                                                              -0.0043686260469257832j,                                                              -0.0010198024101555347j,                                                              -0.0082517862319946289j,                                                              -0.003456643782556057j,                                                              -0.014193611219525337j,                                                              -0.005875137634575367j,                                                              -0.020293503999710083j,                                                              -0.0067503536120057106j,                                                              -0.026798896491527557j,                                                              -0.0073488112539052963j,                                                              -0.037041611969470978j,                                                              -0.010557252913713455j,                                                              -0.055669989436864853j,                                                              -0.018332764506340027j,                                                              -0.089904911816120148j,                                                              -0.033361352980136871j,                                                              -0.16902604699134827j,                                                              -0.074318811297416687j,                                                              -0.58429563045501709j,                                     (7.2191945754696007e-09  -0.35892376303672791j),                                     (0.58778399229049683     +0.63660913705825806j),                                     (0.95105588436126709     +0.87681591510772705j),                                     (0.95105588436126709     +0.98705857992172241j),                                     (0.5877838134765625      +0.55447429418563843j),                                     (5.8516356205018383e-09  +0.026006083935499191j),                                     (-0.5877840518951416     -0.60616838932037354j),                                     (-0.95105588436126709    -0.9311758279800415j),                                     (-0.95105588436126709    -0.96169203519821167j),                                     (-0.5877838134765625     -0.57292771339416504j),                                     (-8.7774534307527574e-09 -0.0073488391935825348j),                                     (0.58778399229049683     +0.59720659255981445j),                                     (0.95105588436126709     +0.94438445568084717j),                                     (0.95105588436126709     +0.95582199096679688j),                                     (0.5877838134765625      +0.58196049928665161j),                                     (1.4629089051254596e-08  +0.0026587247848510742j),                                     (-0.5877840518951416     -0.59129220247268677j),                                     (-0.95105588436126709    -0.94841635227203369j),                                     (-0.95105588436126709    -0.95215457677841187j),                                     (-0.5877838134765625     -0.58535969257354736j),                                     (-1.7554906861505515e-08 -0.00051158666610717773j),                                     (0.58778399229049683     +0.58867418766021729j),                                     (0.95105582475662231     +0.94965213537216187j),                                     (0.95105588436126709     +0.95050644874572754j),                                     (0.5877838134765625      +0.58619076013565063j),                                     (2.3406542482007353e-08  +1.1920928955078125e-07j),                                     (-0.5877840518951416     -0.58783555030822754j),                                     (-0.95105588436126709    -0.95113480091094971j),                                     (-0.95105588436126709    -0.95113474130630493j),                                     (-0.5877838134765625     -0.58783555030822754j),                                     (-2.6332360292258272e-08 -8.1956386566162109e-08j),                                     (0.58778399229049683     +0.58783555030822754j),                                     (0.95105582475662231     +0.95113474130630493j),                                     (0.95105588436126709     +0.95113474130630493j),                                     (0.5877838134765625      +0.58783560991287231j),                                     (3.218399768911695e-08   +1.1920928955078125e-07j))        fg = self.fg        sampling_freq = 100        ntaps = 51                src1 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE,sampling_freq * 0.10, 1.0)        src2 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE,sampling_freq * 0.10, 1.0)                head1 = gr.head (gr.sizeof_float, int (ntaps + sampling_freq * 0.10))        head2 = gr.head (gr.sizeof_float, int (ntaps + sampling_freq * 0.10))        taps = gr.firdes_hilbert (ntaps)        hd = gr.filter_delay_fc (taps)        dst2 = gr.vector_sink_c ()        fg.connect (src1, head1)        fg.connect (src2, head2)                fg.connect (head1, (hd,0))        fg.connect (head2, (hd,1))        fg.connect (hd, dst2)        fg.run ()        # get output        result_data = dst2.data ()        self.assertComplexTuplesAlmostEqual (expected_result, result_data, 5)        if __name__ == '__main__':    gr_unittest.main ()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -