📄 gr_dd_mpsk_sync_cc.cc
字号:
/* -*- c++ -*- *//* * Copyright 2004 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */#ifdef HAVE_CONFIG_H#include "config.h"#endif#include <gr_dd_mpsk_sync_cc.h>#include <gr_io_signature.h>#include <gr_sincos.h>#include <gri_mmse_fir_interpolator_cc.h>#include <math.h>#include <stdexcept>#include <gr_complex.h>#define M_TWOPI (2*M_PI)gr_dd_mpsk_sync_cc_sptrgr_make_dd_mpsk_sync_cc (float alpha, float beta, float max_freq, float min_freq, float ref_phase, float omega, float gain_omega, float mu, float gain_mu){ return gr_dd_mpsk_sync_cc_sptr (new gr_dd_mpsk_sync_cc (alpha, beta, max_freq, min_freq,ref_phase, omega,gain_omega,mu,gain_mu));}gr_dd_mpsk_sync_cc::gr_dd_mpsk_sync_cc (float alpha, float beta, float max_freq, float min_freq, float ref_phase, float omega, float gain_omega, float mu, float gain_mu) : gr_block ("dd_mpsk_sync_cc", gr_make_io_signature (1, 1, sizeof (gr_complex)), gr_make_io_signature (1, 1, sizeof (gr_complex))), d_alpha(alpha), d_beta(beta), d_max_freq(max_freq), d_min_freq(min_freq), d_ref_phase(ref_phase),d_omega(omega), d_gain_omega(gain_omega), d_mu(mu), d_gain_mu(gain_mu), d_phase(0), d_freq((max_freq+min_freq)/2), d_last_sample(0), d_interp(new gri_mmse_fir_interpolator_cc()), d_dl_idx(0){ if (omega <= 0.0) throw std::out_of_range ("clock rate must be > 0"); if (gain_mu < 0 || gain_omega < 0) throw std::out_of_range ("Gains must be non-negative"); assert(d_interp->ntaps() <= DLLEN); // zero double length delay line. for (unsigned int i = 0; i < 2 * DLLEN; i++) d_dl[i] = gr_complex(0.0,0.0);}gr_dd_mpsk_sync_cc::~gr_dd_mpsk_sync_cc(){ delete d_interp;}floatgr_dd_mpsk_sync_cc::phase_detector(gr_complex sample,float ref_phase){ return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() - (sample.imag()>0 ? 1.0 : -1.0) * sample.real());}voidgr_dd_mpsk_sync_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required){ unsigned ninputs = ninput_items_required.size(); for (unsigned i=0; i < ninputs; i++) ninput_items_required[i] = (int) ceil((noutput_items * d_omega) + d_interp->ntaps());}gr_complexgr_dd_mpsk_sync_cc::slicer_45deg (gr_complex sample){ float real,imag; if(sample.real() > 0) real=1; else real=-1; if(sample.imag() > 0) imag = 1; else imag = -1; return gr_complex(real,imag);}gr_complexgr_dd_mpsk_sync_cc::slicer_0deg (gr_complex sample){ gr_complex out; if( fabs(sample.real()) > fabs(sample.imag()) ) { if(sample.real() > 0) return gr_complex(1.0,0.0); else return gr_complex(-1.0,0.0); } else { if(sample.imag() > 0) return gr_complex(0.0, 1.0); else return gr_complex(0.0, -1.0); }}intgr_dd_mpsk_sync_cc::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items){ const gr_complex *in = (gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; int ii, oo; ii = 0; oo = 0; float error; float t_imag, t_real; gr_complex nco_out; float mm_val; while (oo < noutput_items) { // // generate an output sample by interpolating between the carrier // tracked samples in the delay line. d_mu, the fractional // interpolation amount (in [0.0, 1.0]) is controlled by the // symbol timing loop below. // out[oo] = d_interp->interpolate (&d_dl[d_dl_idx], d_mu); error = phase_detector(out[oo], d_ref_phase); d_freq = d_freq + d_beta * error; d_phase = d_phase + d_alpha * error; while(d_phase>M_TWOPI) d_phase -= M_TWOPI; while(d_phase<-M_TWOPI) d_phase += M_TWOPI; if (d_freq > d_max_freq) d_freq = d_max_freq; else if (d_freq < d_min_freq) d_freq = d_min_freq; mm_val = real(d_last_sample * slicer_0deg(out[oo]) - out[oo] * slicer_0deg(d_last_sample)); d_last_sample = out[oo]; d_omega = d_omega + d_gain_omega * mm_val; d_mu = d_mu + d_omega + d_gain_mu * mm_val; while(d_mu >= 1.0) { // // Generate more carrier tracked samples for the delay line // d_mu -= 1.0; gr_sincosf(d_phase, &t_imag, &t_real); nco_out = gr_complex(t_real, -t_imag); gr_complex new_sample = in[ii] * nco_out; d_dl[d_dl_idx] = new_sample; // overwrite oldest sample d_dl[(d_dl_idx + DLLEN)] = new_sample; // and second copy d_dl_idx = (d_dl_idx+1) % DLLEN; // point to the new oldest sample d_phase = d_phase + d_freq; ii++; } oo++; printf("%f\t%f\t%f\t%f\t%f\n",d_mu,d_omega,mm_val,d_freq,d_phase); //printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n",mple).real(),slicer_0deg(d_last_sample).imag(),mm_val,d_omega,d_mu); } assert(ii <= ninput_items[0]); consume_each (ii); return noutput_items;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -