⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gr_dd_mpsk_sync_cc.cc

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 CC
字号:
/* -*- c++ -*- *//* * Copyright 2004 Free Software Foundation, Inc. *  * This file is part of GNU Radio *  * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. *  * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING.  If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */#ifdef HAVE_CONFIG_H#include "config.h"#endif#include <gr_dd_mpsk_sync_cc.h>#include <gr_io_signature.h>#include <gr_sincos.h>#include <gri_mmse_fir_interpolator_cc.h>#include <math.h>#include <stdexcept>#include <gr_complex.h>#define M_TWOPI (2*M_PI)gr_dd_mpsk_sync_cc_sptrgr_make_dd_mpsk_sync_cc (float alpha, float beta, float max_freq, float min_freq, float ref_phase,			 float omega, float gain_omega, float mu, float gain_mu){    return gr_dd_mpsk_sync_cc_sptr (new gr_dd_mpsk_sync_cc (alpha, beta, max_freq, min_freq,ref_phase,							    omega,gain_omega,mu,gain_mu));}gr_dd_mpsk_sync_cc::gr_dd_mpsk_sync_cc (float alpha, float beta, float max_freq, float min_freq,					float ref_phase,					float omega, float gain_omega, float mu, float gain_mu)    : gr_block ("dd_mpsk_sync_cc",		gr_make_io_signature (1, 1, sizeof (gr_complex)),		gr_make_io_signature (1, 1, sizeof (gr_complex))),      d_alpha(alpha), d_beta(beta),       d_max_freq(max_freq), d_min_freq(min_freq),      d_ref_phase(ref_phase),d_omega(omega), d_gain_omega(gain_omega),       d_mu(mu), d_gain_mu(gain_mu),      d_phase(0), d_freq((max_freq+min_freq)/2), d_last_sample(0),       d_interp(new gri_mmse_fir_interpolator_cc()),      d_dl_idx(0){    if (omega <= 0.0)	throw std::out_of_range ("clock rate must be > 0");    if (gain_mu <  0  || gain_omega < 0)	throw std::out_of_range ("Gains must be non-negative");    assert(d_interp->ntaps() <= DLLEN);    // zero double length delay line.    for (unsigned int i = 0; i < 2 * DLLEN; i++)      d_dl[i] = gr_complex(0.0,0.0);}gr_dd_mpsk_sync_cc::~gr_dd_mpsk_sync_cc(){    delete d_interp;}floatgr_dd_mpsk_sync_cc::phase_detector(gr_complex sample,float ref_phase){  return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() -	  (sample.imag()>0 ? 1.0 : -1.0) * sample.real());}voidgr_dd_mpsk_sync_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required){  unsigned ninputs = ninput_items_required.size();  for (unsigned i=0; i < ninputs; i++)    ninput_items_required[i] =      (int) ceil((noutput_items * d_omega) + d_interp->ntaps());}gr_complexgr_dd_mpsk_sync_cc::slicer_45deg (gr_complex sample){  float real,imag;  if(sample.real() > 0)    real=1;  else    real=-1;  if(sample.imag() > 0)    imag = 1;  else    imag = -1;  return gr_complex(real,imag);}gr_complexgr_dd_mpsk_sync_cc::slicer_0deg (gr_complex sample){  gr_complex out;  if( fabs(sample.real()) > fabs(sample.imag()) ) {    if(sample.real() > 0)      return gr_complex(1.0,0.0);    else      return gr_complex(-1.0,0.0);  }  else {    if(sample.imag() > 0)      return gr_complex(0.0, 1.0);    else      return gr_complex(0.0, -1.0);  }}intgr_dd_mpsk_sync_cc::general_work (int noutput_items, 				  gr_vector_int &ninput_items,				  gr_vector_const_void_star &input_items,				  gr_vector_void_star &output_items){  const gr_complex *in = (gr_complex *) input_items[0];  gr_complex *out = (gr_complex *) output_items[0];    int ii, oo;  ii = 0; oo = 0;    float error;  float t_imag, t_real;  gr_complex nco_out;  float mm_val;  while (oo < noutput_items) {    //     // generate an output sample by interpolating between the carrier    // tracked samples in the delay line.  d_mu, the fractional    // interpolation amount (in [0.0, 1.0]) is controlled by the    // symbol timing loop below.    //    out[oo] = d_interp->interpolate (&d_dl[d_dl_idx], d_mu);    error = phase_detector(out[oo], d_ref_phase);        d_freq = d_freq + d_beta * error;    d_phase = d_phase + d_alpha * error;    while(d_phase>M_TWOPI)      d_phase -= M_TWOPI;    while(d_phase<-M_TWOPI)      d_phase += M_TWOPI;          if (d_freq > d_max_freq)      d_freq = d_max_freq;    else if (d_freq < d_min_freq)      d_freq = d_min_freq;          mm_val = real(d_last_sample * slicer_0deg(out[oo]) - out[oo] * slicer_0deg(d_last_sample));    d_last_sample = out[oo];    d_omega = d_omega + d_gain_omega * mm_val;    d_mu = d_mu + d_omega + d_gain_mu * mm_val;        while(d_mu >= 1.0) {      //      // Generate more carrier tracked samples for the delay line      //      d_mu -= 1.0;      gr_sincosf(d_phase, &t_imag, &t_real);      nco_out = gr_complex(t_real, -t_imag);      gr_complex new_sample = in[ii] * nco_out;      d_dl[d_dl_idx] = new_sample;		// overwrite oldest sample      d_dl[(d_dl_idx + DLLEN)] = new_sample;	// and second copy      d_dl_idx = (d_dl_idx+1) % DLLEN;		// point to the new oldest sample      d_phase = d_phase + d_freq;      ii++;    }    oo++;    printf("%f\t%f\t%f\t%f\t%f\n",d_mu,d_omega,mm_val,d_freq,d_phase);    //printf("%f\t%f\t%f\t%f\t%f\t%f\t%f\n",mple).real(),slicer_0deg(d_last_sample).imag(),mm_val,d_omega,d_mu);  }  assert(ii <= ninput_items[0]);  consume_each (ii);  return noutput_items;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -