⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gr_remez.cc

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 CC
📖 第 1 页 / 共 2 页
字号:
/************************************************************************** * Parks-McClellan algorithm for FIR filter design (C version) *------------------------------------------------- *  Copyright (c) 1995,1998  Jake Janovetz (janovetz@uiuc.edu) *  Copyright (c) 2004  Free Software Foundation, Inc. * *  This library is free software; you can redistribute it and/or *  modify it under the terms of the GNU Library General Public *  License as published by the Free Software Foundation; either *  version 2 of the License, or (at your option) any later version. * *  This library is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *  Library General Public License for more details. * *  You should have received a copy of the GNU Library General Public *  License along with this library; if not, write to the Free *  Foundation, Inc., 51 Franklin Street, Boston, MA  02110-1301  USA * * *  Sep 1999 - Paul Kienzle (pkienzle@cs.indiana.edu) *      Modified for use in octave as a replacement for the matlab function *      remez.mex.  In particular, magnitude responses are required for all *      band edges rather than one per band, griddensity is a parameter, *      and errors are returned rather than printed directly. *  Mar 2000 - Kai Habel (kahacjde@linux.zrz.tu-berlin.de) *      Change: ColumnVector x=arg(i).vector_value(); *      to: ColumnVector x(arg(i).vector_value()); *  There appear to be some problems with the routine Search. See comments *  therein [search for PAK:].  I haven't looked closely at the rest *  of the code---it may also have some problems. *************************************************************************//* * This code was extracted from octave.sf.net, and wrapped with * GNU Radio glue. */#ifdef HAVE_CONFIG_H#include "config.h"#endif#include <gr_remez.h>#include <cmath>#include <assert.h>#include <iostream>#ifndef LOCAL_BUFFER#include <vector>#define LOCAL_BUFFER(T, buf, size) \  std::vector<T> buf ## _vector (size); \  T *buf = &(buf ## _vector[0])#endif#define CONST const#define BANDPASS       1#define DIFFERENTIATOR 2#define HILBERT        3#define NEGATIVE       0#define POSITIVE       1#define Pi             3.14159265358979323846#define Pi2            (2*Pi)#define GRIDDENSITY    16#define MAXITERATIONS  40/******************* * CreateDenseGrid *================= * Creates the dense grid of frequencies from the specified bands. * Also creates the Desired Frequency Response function (D[]) and * the Weight function (W[]) on that dense grid * * * INPUT: * ------ * int      r        - 1/2 the number of filter coefficients * int      numtaps  - Number of taps in the resulting filter * int      numband  - Number of bands in user specification * double   bands[]  - User-specified band edges [2*numband] * double   des[]    - Desired response per band [2*numband] * double   weight[] - Weight per band [numband] * int      symmetry - Symmetry of filter - used for grid check * int      griddensity * * OUTPUT: * ------- * int    gridsize   - Number of elements in the dense frequency grid * double Grid[]     - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[]        - Desired response on the dense grid [gridsize] * double W[]        - Weight function on the dense grid [gridsize] *******************/static void CreateDenseGrid (int r, int numtaps, int numband, const double bands[],		 const double des[], const double weight[], int gridsize,		 double Grid[], double D[], double W[],		 int symmetry, int griddensity){   int i, j, k, band;   double delf, lowf, highf, grid0;   delf = 0.5/(griddensity*r);/* * For differentiator, hilbert, *   symmetry is odd and Grid[0] = max(delf, bands[0]) */   grid0 = (symmetry == NEGATIVE) && (delf > bands[0]) ? delf : bands[0];   j=0;   for (band=0; band < numband; band++)   {      lowf = (band==0 ? grid0 : bands[2*band]);      highf = bands[2*band + 1];      k = (int)((highf - lowf)/delf + 0.5);   /* .5 for rounding */      for (i=0; i<k; i++)      {         D[j] = des[2*band] + i*(des[2*band+1]-des[2*band])/(k-1);         W[j] = weight[band];         Grid[j] = lowf;         lowf += delf;         j++;      }      Grid[j-1] = highf;   }/* * Similar to above, if odd symmetry, last grid point can't be .5 *  - but, if there are even taps, leave the last grid point at .5 */   if ((symmetry == NEGATIVE) &&       (Grid[gridsize-1] > (0.5 - delf)) &&       (numtaps % 2))   {      Grid[gridsize-1] = 0.5-delf;   }}/******************** * InitialGuess *============== * Places Extremal Frequencies evenly throughout the dense grid. * * * INPUT:  * ------ * int r        - 1/2 the number of filter coefficients * int gridsize - Number of elements in the dense frequency grid * * OUTPUT: * ------- * int Ext[]    - Extremal indexes to dense frequency grid [r+1] ********************/static voidInitialGuess (int r, int Ext[], int gridsize){   int i;   for (i=0; i<=r; i++)      Ext[i] = i * (gridsize-1) / r;}/*********************** * CalcParms *=========== * * * INPUT: * ------ * int    r      - 1/2 the number of filter coefficients * int    Ext[]  - Extremal indexes to dense frequency grid [r+1] * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[]    - Desired response on the dense grid [gridsize] * double W[]    - Weight function on the dense grid [gridsize] * * OUTPUT: * ------- * double ad[]   - 'b' in Oppenheim & Schafer [r+1] * double x[]    - [r+1] * double y[]    - 'C' in Oppenheim & Schafer [r+1] ***********************/static voidCalcParms (int r, int Ext[], double Grid[], double D[], double W[],	   double ad[], double x[], double y[]){   int i, j, k, ld;   double sign, xi, delta, denom, numer;/* * Find x[] */   for (i=0; i<=r; i++)      x[i] = cos(Pi2 * Grid[Ext[i]]);/* * Calculate ad[]  - Oppenheim & Schafer eq 7.132 */   ld = (r-1)/15 + 1;         /* Skips around to avoid round errors */   for (i=0; i<=r; i++)   {       denom = 1.0;       xi = x[i];       for (j=0; j<ld; j++)       {          for (k=j; k<=r; k+=ld)             if (k != i)                denom *= 2.0*(xi - x[k]);       }       if (fabs(denom)<0.00001)          denom = 0.00001;       ad[i] = 1.0/denom;   }/* * Calculate delta  - Oppenheim & Schafer eq 7.131 */   numer = denom = 0;   sign = 1;   for (i=0; i<=r; i++)   {      numer += ad[i] * D[Ext[i]];      denom += sign * ad[i]/W[Ext[i]];      sign = -sign;   }   delta = numer/denom;   sign = 1;/* * Calculate y[]  - Oppenheim & Schafer eq 7.133b */   for (i=0; i<=r; i++)   {      y[i] = D[Ext[i]] - sign * delta/W[Ext[i]];      sign = -sign;   }}/********************* * ComputeA *========== * Using values calculated in CalcParms, ComputeA calculates the * actual filter response at a given frequency (freq).  Uses * eq 7.133a from Oppenheim & Schafer. * * * INPUT: * ------ * double freq - Frequency (0 to 0.5) at which to calculate A * int    r    - 1/2 the number of filter coefficients * double ad[] - 'b' in Oppenheim & Schafer [r+1] * double x[]  - [r+1] * double y[]  - 'C' in Oppenheim & Schafer [r+1] * * OUTPUT: * ------- * Returns double value of A[freq] *********************/static doubleComputeA (double freq, int r, double ad[], double x[], double y[]){   int i;   double xc, c, denom, numer;   denom = numer = 0;   xc = cos(Pi2 * freq);   for (i=0; i<=r; i++)   {      c = xc - x[i];      if (fabs(c) < 1.0e-7)      {         numer = y[i];         denom = 1;         break;      }      c = ad[i]/c;      denom += c;      numer += c*y[i];   }   return numer/denom;}/************************ * CalcError *=========== * Calculates the Error function from the desired frequency response * on the dense grid (D[]), the weight function on the dense grid (W[]), * and the present response calculation (A[]) * * * INPUT: * ------ * int    r      - 1/2 the number of filter coefficients * double ad[]   - [r+1] * double x[]    - [r+1] * double y[]    - [r+1] * int gridsize  - Number of elements in the dense frequency grid * double Grid[] - Frequencies on the dense grid [gridsize] * double D[]    - Desired response on the dense grid [gridsize] * double W[]    - Weight function on the desnse grid [gridsize] * * OUTPUT: * ------- * double E[]    - Error function on dense grid [gridsize] ************************/static voidCalcError (int r, double ad[], double x[], double y[],	   int gridsize, double Grid[],	   double D[], double W[], double E[]){   int i;   double A;   for (i=0; i<gridsize; i++)   {      A = ComputeA(Grid[i], r, ad, x, y);      E[i] = W[i] * (D[i] - A);   }}/************************ * Search *======== * Searches for the maxima/minima of the error curve.  If more than * r+1 extrema are found, it uses the following heuristic (thanks * Chris Hanson): * 1) Adjacent non-alternating extrema deleted first. * 2) If there are more than one excess extrema, delete the *    one with the smallest error.  This will create a non-alternation *    condition that is fixed by 1). * 3) If there is exactly one excess extremum, delete the smaller *    of the first/last extremum * * * INPUT: * ------ * int    r        - 1/2 the number of filter coefficients * int    Ext[]    - Indexes to Grid[] of extremal frequencies [r+1] * int    gridsize - Number of elements in the dense frequency grid * double E[]      - Array of error values.  [gridsize] * OUTPUT: * ------- * int    Ext[]    - New indexes to extremal frequencies [r+1] ************************/static intSearch (int r, int Ext[],	int gridsize, double E[]){   int i, j, k, l, extra;     /* Counters */   int up, alt;   int *foundExt;             /* Array of found extremals *//* * Allocate enough space for found extremals. */   foundExt = (int *)malloc((2*r) * sizeof(int));   k = 0;/* * Check for extremum at 0. */   if (((E[0]>0.0) && (E[0]>E[1])) ||       ((E[0]<0.0) && (E[0]<E[1])))      foundExt[k++] = 0;/* * Check for extrema inside dense grid */   for (i=1; i<gridsize-1; i++)   {      if (((E[i]>=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) ||          ((E[i]<=E[i-1]) && (E[i]<E[i+1]) && (E[i]<0.0))) {	// PAK: we sometimes get too many extremal frequencies	if (k >= 2*r) return -3;	foundExt[k++] = i;      }   }/* * Check for extremum at 0.5 */   j = gridsize-1;   if (((E[j]>0.0) && (E[j]>E[j-1])) ||       ((E[j]<0.0) && (E[j]<E[j-1]))) {     if (k >= 2*r) return -3;     foundExt[k++] = j;   }   // PAK: we sometimes get not enough extremal frequencies   if (k < r+1) return -2;/* * Remove extra extremals */   extra = k - (r+1);   assert(extra >= 0);   while (extra > 0)   {      if (E[foundExt[0]] > 0.0)         up = 1;                /* first one is a maxima */      else         up = 0;                /* first one is a minima */      l=0;      alt = 1;      for (j=1; j<k; j++)      {         if (fabs(E[foundExt[j]]) < fabs(E[foundExt[l]]))            l = j;               /* new smallest error. */         if ((up) && (E[foundExt[j]] < 0.0))            up = 0;             /* switch to a minima */         else if ((!up) && (E[foundExt[j]] > 0.0))            up = 1;             /* switch to a maxima */         else	 {             alt = 0;	    // PAK: break now and you will delete the smallest overall	    // extremal.  If you want to delete the smallest of the	    // pair of non-alternating extremals, then you must do:            //	    // if (fabs(E[foundExt[j]]) < fabs(E[foundExt[j-1]])) l=j;	    // else l=j-1;            break;              /* Ooops, found two non-alternating */         }                      /* extrema.  Delete smallest of them */      }  /* if the loop finishes, all extrema are alternating *//* * If there's only one extremal and all are alternating, * delete the smallest of the first/last extremals. */      if ((alt) && (extra == 1))      {         if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]]))	   /* Delete last extremal */	   l = k-1;	   // PAK: changed from l = foundExt[k-1];          else	   /* Delete first extremal */	   l = 0;	   // PAK: changed from l = foundExt[0];           }      for (j=l; j<k-1; j++)        /* Loop that does the deletion */      {         foundExt[j] = foundExt[j+1];	 assert(foundExt[j]<gridsize);      }      k--;      extra--;   }   for (i=0; i<=r; i++)   {      assert(foundExt[i]<gridsize);      Ext[i] = foundExt[i];       /* Copy found extremals to Ext[] */   }   free(foundExt);   return 0;}/********************* * FreqSample *============ * Simple frequency sampling algorithm to determine the impulse * response h[] from A's found in ComputeA * * * INPUT: * ------ * int      N        - Number of filter coefficients * double   A[]      - Sample points of desired response [N/2] * int      symmetry - Symmetry of desired filter * * OUTPUT: * ------- * double h[] - Impulse Response of final filter [N] *********************/static voidFreqSample (int N, double A[], double h[], int symm){   int n, k;   double x, val, M;   M = (N-1.0)/2.0;   if (symm == POSITIVE)   {      if (N%2)      {         for (n=0; n<N; n++)         {            val = A[0];            x = Pi2 * (n - M)/N;            for (k=1; k<=M; k++)               val += 2.0 * A[k] * cos(x*k);            h[n] = val/N;         }      }      else      {         for (n=0; n<N; n++)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -