📄 gr_remez.cc
字号:
/************************************************************************** * Parks-McClellan algorithm for FIR filter design (C version) *------------------------------------------------- * Copyright (c) 1995,1998 Jake Janovetz (janovetz@uiuc.edu) * Copyright (c) 2004 Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA * * * Sep 1999 - Paul Kienzle (pkienzle@cs.indiana.edu) * Modified for use in octave as a replacement for the matlab function * remez.mex. In particular, magnitude responses are required for all * band edges rather than one per band, griddensity is a parameter, * and errors are returned rather than printed directly. * Mar 2000 - Kai Habel (kahacjde@linux.zrz.tu-berlin.de) * Change: ColumnVector x=arg(i).vector_value(); * to: ColumnVector x(arg(i).vector_value()); * There appear to be some problems with the routine Search. See comments * therein [search for PAK:]. I haven't looked closely at the rest * of the code---it may also have some problems. *************************************************************************//* * This code was extracted from octave.sf.net, and wrapped with * GNU Radio glue. */#ifdef HAVE_CONFIG_H#include "config.h"#endif#include <gr_remez.h>#include <cmath>#include <assert.h>#include <iostream>#ifndef LOCAL_BUFFER#include <vector>#define LOCAL_BUFFER(T, buf, size) \ std::vector<T> buf ## _vector (size); \ T *buf = &(buf ## _vector[0])#endif#define CONST const#define BANDPASS 1#define DIFFERENTIATOR 2#define HILBERT 3#define NEGATIVE 0#define POSITIVE 1#define Pi 3.14159265358979323846#define Pi2 (2*Pi)#define GRIDDENSITY 16#define MAXITERATIONS 40/******************* * CreateDenseGrid *================= * Creates the dense grid of frequencies from the specified bands. * Also creates the Desired Frequency Response function (D[]) and * the Weight function (W[]) on that dense grid * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int numtaps - Number of taps in the resulting filter * int numband - Number of bands in user specification * double bands[] - User-specified band edges [2*numband] * double des[] - Desired response per band [2*numband] * double weight[] - Weight per band [numband] * int symmetry - Symmetry of filter - used for grid check * int griddensity * * OUTPUT: * ------- * int gridsize - Number of elements in the dense frequency grid * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the dense grid [gridsize] *******************/static void CreateDenseGrid (int r, int numtaps, int numband, const double bands[], const double des[], const double weight[], int gridsize, double Grid[], double D[], double W[], int symmetry, int griddensity){ int i, j, k, band; double delf, lowf, highf, grid0; delf = 0.5/(griddensity*r);/* * For differentiator, hilbert, * symmetry is odd and Grid[0] = max(delf, bands[0]) */ grid0 = (symmetry == NEGATIVE) && (delf > bands[0]) ? delf : bands[0]; j=0; for (band=0; band < numband; band++) { lowf = (band==0 ? grid0 : bands[2*band]); highf = bands[2*band + 1]; k = (int)((highf - lowf)/delf + 0.5); /* .5 for rounding */ for (i=0; i<k; i++) { D[j] = des[2*band] + i*(des[2*band+1]-des[2*band])/(k-1); W[j] = weight[band]; Grid[j] = lowf; lowf += delf; j++; } Grid[j-1] = highf; }/* * Similar to above, if odd symmetry, last grid point can't be .5 * - but, if there are even taps, leave the last grid point at .5 */ if ((symmetry == NEGATIVE) && (Grid[gridsize-1] > (0.5 - delf)) && (numtaps % 2)) { Grid[gridsize-1] = 0.5-delf; }}/******************** * InitialGuess *============== * Places Extremal Frequencies evenly throughout the dense grid. * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int gridsize - Number of elements in the dense frequency grid * * OUTPUT: * ------- * int Ext[] - Extremal indexes to dense frequency grid [r+1] ********************/static voidInitialGuess (int r, int Ext[], int gridsize){ int i; for (i=0; i<=r; i++) Ext[i] = i * (gridsize-1) / r;}/*********************** * CalcParms *=========== * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int Ext[] - Extremal indexes to dense frequency grid [r+1] * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the dense grid [gridsize] * * OUTPUT: * ------- * double ad[] - 'b' in Oppenheim & Schafer [r+1] * double x[] - [r+1] * double y[] - 'C' in Oppenheim & Schafer [r+1] ***********************/static voidCalcParms (int r, int Ext[], double Grid[], double D[], double W[], double ad[], double x[], double y[]){ int i, j, k, ld; double sign, xi, delta, denom, numer;/* * Find x[] */ for (i=0; i<=r; i++) x[i] = cos(Pi2 * Grid[Ext[i]]);/* * Calculate ad[] - Oppenheim & Schafer eq 7.132 */ ld = (r-1)/15 + 1; /* Skips around to avoid round errors */ for (i=0; i<=r; i++) { denom = 1.0; xi = x[i]; for (j=0; j<ld; j++) { for (k=j; k<=r; k+=ld) if (k != i) denom *= 2.0*(xi - x[k]); } if (fabs(denom)<0.00001) denom = 0.00001; ad[i] = 1.0/denom; }/* * Calculate delta - Oppenheim & Schafer eq 7.131 */ numer = denom = 0; sign = 1; for (i=0; i<=r; i++) { numer += ad[i] * D[Ext[i]]; denom += sign * ad[i]/W[Ext[i]]; sign = -sign; } delta = numer/denom; sign = 1;/* * Calculate y[] - Oppenheim & Schafer eq 7.133b */ for (i=0; i<=r; i++) { y[i] = D[Ext[i]] - sign * delta/W[Ext[i]]; sign = -sign; }}/********************* * ComputeA *========== * Using values calculated in CalcParms, ComputeA calculates the * actual filter response at a given frequency (freq). Uses * eq 7.133a from Oppenheim & Schafer. * * * INPUT: * ------ * double freq - Frequency (0 to 0.5) at which to calculate A * int r - 1/2 the number of filter coefficients * double ad[] - 'b' in Oppenheim & Schafer [r+1] * double x[] - [r+1] * double y[] - 'C' in Oppenheim & Schafer [r+1] * * OUTPUT: * ------- * Returns double value of A[freq] *********************/static doubleComputeA (double freq, int r, double ad[], double x[], double y[]){ int i; double xc, c, denom, numer; denom = numer = 0; xc = cos(Pi2 * freq); for (i=0; i<=r; i++) { c = xc - x[i]; if (fabs(c) < 1.0e-7) { numer = y[i]; denom = 1; break; } c = ad[i]/c; denom += c; numer += c*y[i]; } return numer/denom;}/************************ * CalcError *=========== * Calculates the Error function from the desired frequency response * on the dense grid (D[]), the weight function on the dense grid (W[]), * and the present response calculation (A[]) * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * double ad[] - [r+1] * double x[] - [r+1] * double y[] - [r+1] * int gridsize - Number of elements in the dense frequency grid * double Grid[] - Frequencies on the dense grid [gridsize] * double D[] - Desired response on the dense grid [gridsize] * double W[] - Weight function on the desnse grid [gridsize] * * OUTPUT: * ------- * double E[] - Error function on dense grid [gridsize] ************************/static voidCalcError (int r, double ad[], double x[], double y[], int gridsize, double Grid[], double D[], double W[], double E[]){ int i; double A; for (i=0; i<gridsize; i++) { A = ComputeA(Grid[i], r, ad, x, y); E[i] = W[i] * (D[i] - A); }}/************************ * Search *======== * Searches for the maxima/minima of the error curve. If more than * r+1 extrema are found, it uses the following heuristic (thanks * Chris Hanson): * 1) Adjacent non-alternating extrema deleted first. * 2) If there are more than one excess extrema, delete the * one with the smallest error. This will create a non-alternation * condition that is fixed by 1). * 3) If there is exactly one excess extremum, delete the smaller * of the first/last extremum * * * INPUT: * ------ * int r - 1/2 the number of filter coefficients * int Ext[] - Indexes to Grid[] of extremal frequencies [r+1] * int gridsize - Number of elements in the dense frequency grid * double E[] - Array of error values. [gridsize] * OUTPUT: * ------- * int Ext[] - New indexes to extremal frequencies [r+1] ************************/static intSearch (int r, int Ext[], int gridsize, double E[]){ int i, j, k, l, extra; /* Counters */ int up, alt; int *foundExt; /* Array of found extremals *//* * Allocate enough space for found extremals. */ foundExt = (int *)malloc((2*r) * sizeof(int)); k = 0;/* * Check for extremum at 0. */ if (((E[0]>0.0) && (E[0]>E[1])) || ((E[0]<0.0) && (E[0]<E[1]))) foundExt[k++] = 0;/* * Check for extrema inside dense grid */ for (i=1; i<gridsize-1; i++) { if (((E[i]>=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) || ((E[i]<=E[i-1]) && (E[i]<E[i+1]) && (E[i]<0.0))) { // PAK: we sometimes get too many extremal frequencies if (k >= 2*r) return -3; foundExt[k++] = i; } }/* * Check for extremum at 0.5 */ j = gridsize-1; if (((E[j]>0.0) && (E[j]>E[j-1])) || ((E[j]<0.0) && (E[j]<E[j-1]))) { if (k >= 2*r) return -3; foundExt[k++] = j; } // PAK: we sometimes get not enough extremal frequencies if (k < r+1) return -2;/* * Remove extra extremals */ extra = k - (r+1); assert(extra >= 0); while (extra > 0) { if (E[foundExt[0]] > 0.0) up = 1; /* first one is a maxima */ else up = 0; /* first one is a minima */ l=0; alt = 1; for (j=1; j<k; j++) { if (fabs(E[foundExt[j]]) < fabs(E[foundExt[l]])) l = j; /* new smallest error. */ if ((up) && (E[foundExt[j]] < 0.0)) up = 0; /* switch to a minima */ else if ((!up) && (E[foundExt[j]] > 0.0)) up = 1; /* switch to a maxima */ else { alt = 0; // PAK: break now and you will delete the smallest overall // extremal. If you want to delete the smallest of the // pair of non-alternating extremals, then you must do: // // if (fabs(E[foundExt[j]]) < fabs(E[foundExt[j-1]])) l=j; // else l=j-1; break; /* Ooops, found two non-alternating */ } /* extrema. Delete smallest of them */ } /* if the loop finishes, all extrema are alternating *//* * If there's only one extremal and all are alternating, * delete the smallest of the first/last extremals. */ if ((alt) && (extra == 1)) { if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]])) /* Delete last extremal */ l = k-1; // PAK: changed from l = foundExt[k-1]; else /* Delete first extremal */ l = 0; // PAK: changed from l = foundExt[0]; } for (j=l; j<k-1; j++) /* Loop that does the deletion */ { foundExt[j] = foundExt[j+1]; assert(foundExt[j]<gridsize); } k--; extra--; } for (i=0; i<=r; i++) { assert(foundExt[i]<gridsize); Ext[i] = foundExt[i]; /* Copy found extremals to Ext[] */ } free(foundExt); return 0;}/********************* * FreqSample *============ * Simple frequency sampling algorithm to determine the impulse * response h[] from A's found in ComputeA * * * INPUT: * ------ * int N - Number of filter coefficients * double A[] - Sample points of desired response [N/2] * int symmetry - Symmetry of desired filter * * OUTPUT: * ------- * double h[] - Impulse Response of final filter [N] *********************/static voidFreqSample (int N, double A[], double h[], int symm){ int n, k; double x, val, M; M = (N-1.0)/2.0; if (symm == POSITIVE) { if (N%2) { for (n=0; n<N; n++) { val = A[0]; x = Pi2 * (n - M)/N; for (k=1; k<=M; k++) val += 2.0 * A[k] * cos(x*k); h[n] = val/N; } } else { for (n=0; n<N; n++)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -