⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 biquad_6stage.v

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 V
字号:
`include "mrfm.vh"module mrfm_iir (input clock, input reset, input strobe_in,		 input serial_strobe, input [6:0] serial_addr, input [31:0] serial_data,		 input wire [15:0] sample_in, output reg [15:0] sample_out);   wire [5:0] 	       coeff_addr, coeff_wr_addr;   wire [4:0] 	       data_addr, data_wr_addr;   reg [4:0] 	       cur_offset, data_addr_int, data_wr_addr_int;      wire [15:0] 	       coeff, coeff_wr_data, data, data_wr_data;   wire 	       coeff_wr;   reg 		       data_wr;      wire [30:0] 	       product;   wire [33:0] 	       accum;   wire [15:0] 	       scaled_accum; 		       wire [7:0] 	       shift;   reg [5:0] 	       phase;   wire 	       enable_mult, enable_acc, latch_out, select_input;   reg 		       done, clear_acc;      setting_reg #(`FR_MRFM_IIR_COEFF) sr_coeff(.clock(clock),.reset(reset),					      .strobe(serial_strobe),.addr(serial_addr),.in(serial_data),					      .out({coeff_wr_addr,coeff_wr_data}),.changed(coeff_wr));      setting_reg #(`FR_MRFM_IIR_SHIFT) sr_shift(.clock(clock),.reset(reset),					      .strobe(serial_strobe),.addr(serial_addr),.in(serial_data),					      .out(shift),.changed());      ram64 coeff_ram(.clock(clock),.write(coeff_wr),.wr_addr(coeff_wr_addr),.wr_data(coeff_wr_data),		   .rd_addr(coeff_addr),.rd_data(coeff));      ram32 data_ram(.clock(clock),.write(data_wr),.wr_addr(data_wr_addr),.wr_data(data_wr_data),		  .rd_addr(data_addr),.rd_data(data));      mult mult (.clock(clock),.x(data),.y(coeff),.product(product),.enable_in(enable_mult),.enable_out() );      acc acc (.clock(clock),.reset(reset),.clear(clear_acc),.enable_in(enable_acc),.enable_out(),	    .addend(product),.sum(accum) );      shifter shifter (.in(accum),.out(scaled_accum),.shift(shift));      assign 	       data_wr_data = select_input ? sample_in : scaled_accum;   assign 	       enable_mult = 1'b1;      always @(posedge clock)     if(reset)       cur_offset <= #1 5'd0;     else if(latch_out)       cur_offset <= #1 cur_offset + 5'd1;      assign 	       data_addr = data_addr_int + cur_offset;		    assign 	       data_wr_addr = data_wr_addr_int + cur_offset;		       always @(posedge clock)     if(reset)       done <= #1 1'b0;     else if(latch_out)       done <= #1 1'b1;     else if(strobe_in)       done <= #1 1'b0;      always @(posedge clock)     if(reset)       phase <= #1 6'd0;     else if(strobe_in)       phase <= #1 6'd0;     else if(!done)       phase <= #1 phase + 6'd1;      always @(phase)     case(phase)       6'd0 : data_addr_int = 5'd0;       default : data_addr_int = 5'd0;     endcase // case(phase)      assign 	       coeff_addr = phase;      always @(phase)     case(phase)       6'd01 : data_addr_int = 5'd00; 6'd02 : data_addr_int = 5'd01; 6'd03 : data_addr_int = 5'd02;       6'd04 : data_addr_int = 5'd03; 6'd05 : data_addr_int = 5'd04;              6'd07 : data_addr_int = 5'd03; 6'd08 : data_addr_int = 5'd04; 6'd09 : data_addr_int = 5'd05;       6'd10 : data_addr_int = 5'd06; 6'd11 : data_addr_int = 5'd07;              6'd13 : data_addr_int = 5'd06; 6'd14 : data_addr_int = 5'd07; 6'd15 : data_addr_int = 5'd08;       6'd16 : data_addr_int = 5'd09; 6'd17 : data_addr_int = 5'd10;              6'd19 : data_addr_int = 5'd09; 6'd20 : data_addr_int = 5'd10; 6'd21 : data_addr_int = 5'd11;       6'd22 : data_addr_int = 5'd12; 6'd23 : data_addr_int = 5'd13;              6'd25 : data_addr_int = 5'd12; 6'd26 : data_addr_int = 5'd13; 6'd27 : data_addr_int = 5'd14;       6'd28 : data_addr_int = 5'd15; 6'd29 : data_addr_int = 5'd16;              6'd31 : data_addr_int = 5'd15; 6'd32 : data_addr_int = 5'd16; 6'd33 : data_addr_int = 5'd17;       6'd34 : data_addr_int = 5'd18; 6'd35 : data_addr_int = 5'd19;              default : data_addr_int = 5'd00;     endcase // case(phase)      always @(phase)     case(phase)       6'd0 : data_wr_addr_int = 5'd2;       6'd8 : data_wr_addr_int = 5'd5;       6'd14 : data_wr_addr_int = 5'd8;       6'd20 : data_wr_addr_int = 5'd11;       6'd26 : data_wr_addr_int = 5'd14;       6'd32 : data_wr_addr_int = 5'd17;       6'd38 : data_wr_addr_int = 5'd20;       default : data_wr_addr_int = 5'd0;     endcase // case(phase)   always @(phase)     case(phase)       6'd0, 6'd8, 6'd14, 6'd20, 6'd26, 6'd32, 6'd38: data_wr = 1'b1;       default : data_wr = 1'b0;     endcase // case(phase)         always @(phase)     case(phase)       6'd0, 6'd1, 6'd2, 6'd3, 6'd9, 6'd15, 6'd21, 6'd27, 6'd33 : clear_acc = 1'd1;       default : clear_acc = 1'b0;     endcase // case(phase)      assign 	       enable_acc = ~clear_acc;   assign 	       latch_out = (phase == 6'd38);      always @(posedge clock)     if(reset)       sample_out <= #1 16'd0;     else if(latch_out)       sample_out <= #1 scaled_accum;   endmodule // mrfm_iir

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -