📄 usrp_ra_receiver.py
字号:
flt = "%6.3f" % data inter = self.decln integ = self.integ fc = self.observing fc = fc / 1000000 bw = self.bw bw = bw / 1000000 ga = self.gain now = time.time() # # If time to write full header info (saves storage this way) # if (now - self.continuum_then > 20): self.sun.compute(self.locality) enow = ephem.now() sun_insky = "Down" self.sunstate = "Dn" if ((self.sun.rise_time < enow) and (enow < self.sun.set_time)): sun_insky = "Up" self.sunstate = "Up" self.continuum_then = now continuum_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",") continuum_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw)) continuum_file.write(",Ga="+str(ga)+",Sun="+str(sun_insky)+"\n") else: continuum_file.write(str(ephem.hours(sidtime))+" "+flt+"\n") continuum_file.close() return(data) def write_spectral_data(self,data,sidtime): now = time.time() delta = 10 # If time to write out spectral data # We don't write this out every time, in order to # save disk space. Since the spectral data are # typically heavily averaged, writing this data # "once in a while" is OK. # if (now - self.spectral_then >= delta): self.spectral_then = now # Get localtime structure to make filename from foo = time.localtime() pfx = self.prefix filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, foo.tm_mon, foo.tm_mday, foo.tm_hour) # Open the file spectral_file = open (filenamestr+".sdat","a") # Setup data fields to be written r = data inter = self.decln fc = self.observing fc = fc / 1000000 bw = self.bw bw = bw / 1000000 av = self.avg_alpha # Write those fields spectral_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av)) spectral_file.write (" [ ") for r in data: spectral_file.write(" "+str(r)) spectral_file.write(" ]\n") spectral_file.close() return(data) return(data) def seti_analysis(self,fftbuf,sidtime): l = len(fftbuf) x = 0 hits = [] hit_intensities = [] if self.seticounter < self.setitimer: self.seticounter = self.seticounter + 1 return else: self.seticounter = 0 # Run through FFT output buffer, computing standard deviation (Sigma) avg = 0 # First compute average for i in range(0,l): avg = avg + fftbuf[i] avg = avg / l sigma = 0.0 # Then compute standard deviation (Sigma) for i in range(0,l): d = fftbuf[i] - avg sigma = sigma + (d*d) sigma = Numeric.sqrt(sigma/l) # # Snarfle through the FFT output buffer again, looking for # outlying data points start_f = self.observing - (self.fft_input_rate/2) current_f = start_f l = len(fftbuf) f_incr = self.fft_input_rate / l hit = -1 # -nyquist to DC for i in range(l/2,l): # # If current FFT buffer has an item that exceeds the specified # sigma # if ((fftbuf[i] - avg) > (self.setik * sigma)): hits.append(current_f) hit_intensities.append(fftbuf[i]) current_f = current_f + f_incr # DC to nyquist for i in range(0,l/2): # # If current FFT buffer has an item that exceeds the specified # sigma # if ((fftbuf[i] - avg) > (self.setik * sigma)): hits.append(current_f) hit_intensities.append(fftbuf[i]) current_f = current_f + f_incr # No hits if (len(hits) <= 0): return # # OK, so we have some hits in the FFT buffer # They'll have a rather substantial gauntlet to run before # being declared a real "hit" # # Update stats self.s1hitcounter = self.s1hitcounter + len(hits) # Weed out buffers with an excessive number of # signals above Sigma if (len(hits) > self.nhits): return # Weed out FFT buffers with apparent multiple narrowband signals # separated significantly in frequency. This means that a # single signal spanning multiple bins is OK, but a buffer that # has multiple, apparently-separate, signals isn't OK. # last = hits[0] ns2 = 1 for i in range(1,len(hits)): if ((hits[i] - last) > (f_incr*3.0)): return last = hits[i] ns2 = ns2 + 1 self.s2hitcounter = self.s2hitcounter + ns2 # # Run through all available hit buffers, computing difference between # frequencies found there, if they're all within the chirp limits # declare a good hit # good_hit = False f_ds = Numeric.zeros(self.nhitlines, Numeric.Float64) avg_delta = 0 k = 0 for i in range(0,min(len(hits),len(self.hits_array[:,0]))): f_ds[0] = abs(self.hits_array[i,0] - hits[i]) for j in range(1,len(f_ds)): f_ds[j] = abs(self.hits_array[i,j] - self.hits_array[i,0]) avg_delta = avg_delta + f_ds[j] k = k + 1 if (self.seti_isahit (f_ds)): good_hit = True self.hitcounter = self.hitcounter + 1 break if (avg_delta/k < (self.seti_fft_bandwidth/2)): self.avgdelta = avg_delta / k # Save 'n shuffle hits # Old hit buffers percolate through the hit buffers # (there are self.nhitlines of these buffers) # and then drop off the end # A consequence is that while the nhitlines buffers are filling, # you can get some absurd values for self.avgdelta, because some # of the buffers are full of zeros for i in range(self.nhitlines,1): self.hits_array[:,i] = self.hits_array[:,i-1] self.hit_intensities[:,i] = self.hit_intensities[:,i-1] for i in range(0,len(hits)): self.hits_array[i,0] = hits[i] self.hit_intensities[i,0] = hit_intensities[i] # Finally, write the hits/intensities buffer if (good_hit): self.write_hits(sidtime) return def seti_isahit(self,fdiffs): truecount = 0 for i in range(0,len(fdiffs)): if (fdiffs[i] >= self.CHIRP_LOWER and fdiffs[i] <= self.CHIRP_UPPER): truecount = truecount + 1 if truecount == len(fdiffs): return (True) else: return (False) def write_hits(self,sidtime): # Create localtime structure for producing filename foo = time.localtime() pfx = self.prefix filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, foo.tm_mon, foo.tm_mday, foo.tm_hour) # Open the data file, appending hits_file = open (filenamestr+".seti","a") # Write sidtime first hits_file.write(str(ephem.hours(sidtime))+" "+str(self.decln)+" ") # # Then write the hits/hit intensities buffers with enough # "syntax" to allow parsing by external (not yet written!) # "stuff". # for i in range(0,self.nhitlines): hits_file.write(" ") for j in range(0,self.nhits): hits_file.write(str(self.hits_array[j,i])+":") hits_file.write(str(self.hit_intensities[j,i])+",") hits_file.write("\n") hits_file.close() return def xydfunc(self,xyv): if self.setimode == True: return magn = int(Numeric.log10(self.observing)) if (magn == 6 or magn == 7 or magn == 8): magn = 6 dfreq = xyv[0] * pow(10.0,magn) ratio = self.observing / dfreq vs = 1.0 - ratio vs *= 299792.0 if magn >= 9: xhz = "Ghz" elif magn >= 6: xhz = "Mhz" elif magn <= 5: xhz = "Khz" s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1]) s2 = "\n%.3fkm/s" % vs self.myform['spec_data'].set_value(s+s2) def xydfunc_waterfall(self,pos): lower = self.observing - (self.seti_fft_bandwidth / 2) upper = self.observing + (self.seti_fft_bandwidth / 2) binwidth = self.seti_fft_bandwidth / 1024 s = "%.6fMHz" % ((lower + (pos.x*binwidth)) / 1.0e6) self.myform['spec_data'].set_value(s) def toggle_cal(self): if (self.calstate == True): self.calstate = False self.u.write_io(0,0,(1<<15)) self.calibrator.SetLabel("Calibration Source: Off") else: self.calstate = True self.u.write_io(0,(1<<15),(1<<15)) self.calibrator.SetLabel("Calibration Source: On") def toggle_annotation(self): if (self.annotate_state == True): self.annotate_state = False self.annotation.SetLabel("Annotation: Off") else: self.annotate_state = True self.annotation.SetLabel("Annotation: On") # # Turn scanning on/off # Called-back by "Recording" button # def toggle_scanning(self): # Current scanning? Flip state if (self.scanning == True): self.scanning = False self.scan_control.SetLabel("Scan: Off") # Not scanning else: self.scanning = True self.scan_control.SetLabel("Scan: On ") def set_pd_offset(self,offs): self.myform['offset'].set_value(offs) self.calib_offset=offs x = self.calib_coeff / 100.0 self.cal_offs.set_k(offs*(x*8000)) def set_pd_gain(self,gain): self.myform['dcgain'].set_value(gain) self.cal_mult.set_k(gain*0.01) self.calib_coeff = gain x = gain/100.0 self.cal_offs.set_k(self.calib_offset*(x*8000)) def compute_notch_taps(self,notchlist): NOTCH_TAPS = 256 tmptaps = Numeric.zeros(NOTCH_TAPS,Numeric.Complex64) binwidth = self.bw / NOTCH_TAPS for i in range(0,NOTCH_TAPS): tmptaps[i] = complex(1.0,0.0) for i in notchlist: diff = i - self.observing if i == 0: break if (diff > 0): idx = diff / binwidth idx = int(idx) if (idx < 0 or idx > (NOTCH_TAPS/2)): break tmptaps[idx] = complex(0.0, 0.0) if (diff < 0): idx = -diff / binwidth idx = (NOTCH_TAPS/2) - idx idx = int(idx+(NOTCH_TAPS/2)) if (idx < 0 or idx > (NOTCH_TAPS)): break tmptaps[idx] = complex(0.0, 0.0) self.notch_taps = FFT.inverse_fft(tmptaps)def main (): app = stdgui.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision: 6341 $", nstatus=1) app.MainLoop()if __name__ == '__main__': main ()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -