📄 ra_waterfallsink.py
字号:
#!/usr/bin/env python## Copyright 2003,2004,2005 Free Software Foundation, Inc.# # This file is part of GNU Radio# # GNU Radio is free software; you can redistribute it and/or modify# it under the terms of the GNU General Public License as published by# the Free Software Foundation; either version 2, or (at your option)# any later version.# # GNU Radio is distributed in the hope that it will be useful,# but WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the# GNU General Public License for more details.# # You should have received a copy of the GNU General Public License# along with GNU Radio; see the file COPYING. If not, write to# the Free Software Foundation, Inc., 51 Franklin Street,# Boston, MA 02110-1301, USA.# from gnuradio import gr, gru, windowfrom gnuradio.wxgui import stdguiimport wximport gnuradio.wxgui.plot as plotimport numpyimport osimport threadingimport math default_fftsink_size = (640,240)default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15)def axis_design( x1, x2, nx ): # Given start, end, and number of labels, return value of first label, # increment between labels, number of unlabeled division between labels, # and scale factor. dx = abs( x2 - x1 )/float(nx+1) # allow for space at each end ldx = math.log10(dx) l2 = math.log10(2.) l5 = math.log10(5.) le = math.floor(ldx) lf = ldx - le if lf < l2/2: c = 1 dt = 10 elif lf < (l2+l5)/2: c = 2 dt = 4 elif lf < (l5+1)/2: c = 5 dt = 5 else: c = 1 dt = 10 le += 1 inc = c*pow( 10., le ) first = math.ceil( x1/inc )*inc scale = 1. while ( abs(x1*scale) >= 1e5 ) or ( abs(x2*scale) >= 1e5 ): scale *= 1e-3 return ( first, inc, dt, scale ) class waterfall_sink_base(object): def __init__(self, input_is_real=False, baseband_freq=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', ofunc=None, xydfunc=None): # initialize common attributes self.baseband_freq = baseband_freq self.sample_rate = sample_rate self.fft_size = fft_size self.fft_rate = fft_rate self.average = average self.ofunc = ofunc self.xydfunc = xydfunc if avg_alpha is None: self.avg_alpha = 2.0 / fft_rate else: self.avg_alpha = avg_alpha self.title = title self.input_is_real = input_is_real self.msgq = gr.msg_queue(2) # queue up to 2 messages def reconnect( self, fg ): fg.connect( *self.block_list ) def set_average(self, average): self.average = average if average: self.avg.set_taps(self.avg_alpha) else: self.avg.set_taps(1.0) def set_avg_alpha(self, avg_alpha): self.avg_alpha = avg_alpha def set_baseband_freq(self, baseband_freq): self.baseband_freq = baseband_freq def set_sample_rate(self, sample_rate): self.sample_rate = sample_rate self._set_n() def _set_n(self): self.one_in_n.set_n(max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) class waterfall_sink_f(gr.hier_block, waterfall_sink_base): def __init__(self, fg, parent, baseband_freq=0, ref_level=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None): waterfall_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size) self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size, max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vfc(self.fft_size, True, mywindow) c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)) sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.block_list = (s2p, self.one_in_n, fft, c2mag, self.avg, log, sink) self.reconnect( fg ) gr.hier_block.__init__(self, fg, s2p, sink) self.win = waterfall_window(self, parent, size=size, report=report, ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc) self.set_average(self.average)class waterfall_sink_c(gr.hier_block, waterfall_sink_base): def __init__(self, fg, parent, baseband_freq=0, ref_level=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None): waterfall_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size) self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size, max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)) sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.block_list = (s2p, self.one_in_n, fft, c2mag, self.avg, log, sink) self.reconnect( fg ) gr.hier_block.__init__(self, fg, s2p, sink) self.win = waterfall_window(self, parent, size=size, report=report, ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc) self.set_average(self.average)# ------------------------------------------------------------------------myDATA_EVENT = wx.NewEventType()EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)class DataEvent(wx.PyEvent): def __init__(self, data): wx.PyEvent.__init__(self) self.SetEventType (myDATA_EVENT) self.data = data def Clone (self): self.__class__ (self.GetId())class input_watcher (threading.Thread): def __init__ (self, msgq, fft_size, event_receiver, **kwds): threading.Thread.__init__ (self, **kwds) self.setDaemon (1) self.msgq = msgq self.fft_size = fft_size self.event_receiver = event_receiver self.keep_running = True self.start () def run (self): while (self.keep_running): msg = self.msgq.delete_head() # blocking read of message queue itemsize = int(msg.arg1()) nitems = int(msg.arg2()) s = msg.to_string() # get the body of the msg as a string # There may be more than one FFT frame in the message. # If so, we take only the last one if nitems > 1: start = itemsize * (nitems - 1) s = s[start:start+itemsize] complex_data = numpy.fromstring (s, numpy.float32) de = DataEvent (complex_data) wx.PostEvent (self.event_receiver, de) del de class waterfall_window (wx.ScrolledWindow): def __init__ (self, fftsink, parent, id = -1, pos = wx.DefaultPosition, size = wx.DefaultSize, style = wx.DEFAULT_FRAME_STYLE, name = "", report=None, ref_level = 0, span = 50, ofunc=None, xydfunc=None): wx.ScrolledWindow.__init__(self, parent, id, pos, size, style|wx.HSCROLL, name) self.parent = parent self.SetCursor(wx.StockCursor(wx.CURSOR_IBEAM)) self.ref_level = ref_level self.scale_factor = 256./span self.ppsh = 128 # pixels per scroll, horizontal self.SetScrollbars( self.ppsh, 0, fftsink.fft_size/self.ppsh, 0 ) self.fftsink = fftsink self.size = size self.report = report self.ofunc = ofunc self.xydfunc = xydfunc dc1 = wx.MemoryDC() dc1.SetFont( wx.SMALL_FONT ) self.h_scale = dc1.GetCharHeight() + 3 #self.bm_size = ( self.fftsink.fft_size, self.size[1] - self.h_scale ) self.im_size = ( self.fftsink.fft_size, self.size[1] - self.h_scale ) #self.bm = wx.EmptyBitmap( self.bm_size[0], self.bm_size[1], -1) self.im = wx.EmptyImage( self.im_size[0], self.im_size[1], True ) self.im_cur = 0 self.baseband_freq = None self.make_pens() wx.EVT_PAINT( self, self.OnPaint ) wx.EVT_CLOSE (self, self.on_close_window) #wx.EVT_LEFT_UP(self, self.on_left_up) #wx.EVT_LEFT_DOWN(self, self.on_left_down) EVT_DATA_EVENT (self, self.set_data) self.build_popup_menu() wx.EVT_CLOSE (self, self.on_close_window) self.Bind(wx.EVT_RIGHT_UP, self.on_right_click) self.Bind(wx.EVT_MOTION, self.on_motion) self.down_pos = None self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, self) def on_close_window (self, event): self.keep_running = False def on_left_down( self, evt ): self.down_pos = evt.GetPosition() self.down_time = evt.GetTimestamp() def on_left_up( self, evt ): if self.down_pos: dt = ( evt.GetTimestamp() - self.down_time )/1000. pph = self.fftsink.fft_size/float(self.fftsink.sample_rate) dx = evt.GetPosition()[0] - self.down_pos[0] if dx != 0: rt = pph/dx else: rt = 0 t = 'Down time: %f Delta f: %f Period: %f' % ( dt, dx/pph, rt ) print t if self.report: self.report(t) def on_motion(self, event): if self.xydfunc: pos = event.GetPosition() self.xydfunc(pos) def const_list(self,const,len): return [const] * len def make_colormap(self): r = [] r.extend(self.const_list(0,96)) r.extend(range(0,255,4)) r.extend(self.const_list(255,64)) r.extend(range(255,128,-4)) g = [] g.extend(self.const_list(0,32)) g.extend(range(0,255,4)) g.extend(self.const_list(255,64)) g.extend(range(255,0,-4)) g.extend(self.const_list(0,32)) b = range(128,255,4) b.extend(self.const_list(255,64)) b.extend(range(255,0,-4)) b.extend(self.const_list(0,96)) return (r,g,b) def make_pens(self): (r,g,b) = self.make_colormap() self.rgb = numpy.transpose( numpy.array( (r,g,b) ).astype(numpy.int8) ) def OnPaint(self, event): dc = wx.BufferedPaintDC(self) self.DoDrawing( dc ) def DoDrawing(self,dc): w, h = self.GetClientSizeTuple() w = min( w, self.fftsink.fft_size ) if w <= 0: return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -