⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fsm.cc

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 CC
字号:
/* -*- c++ -*- *//* * Copyright 2002 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING.  If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */#include <cstdio>#include <string>#include <iostream>#include <fstream>#include <stdexcept>#include <cmath>#include <stdlib.h>#include "base.h"#include "fsm.h"fsm::fsm(){  d_I=0;  d_S=0;  d_O=0;  d_NS.resize(0);  d_OS.resize(0);  d_PS.resize(0);  d_PI.resize(0);  d_TMi.resize(0);  d_TMl.resize(0);}fsm::fsm(const fsm &FSM){  d_I=FSM.I();  d_S=FSM.S();  d_O=FSM.O();  d_NS=FSM.NS();  d_OS=FSM.OS();  d_PS=FSM.PS(); // is this going to make a deep copy?  d_PI=FSM.PI();  d_TMi=FSM.TMi();  d_TMl=FSM.TMl();}fsm::fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS){  d_I=I;  d_S=S;  d_O=O;  d_NS=NS;  d_OS=OS;   generate_PS_PI();  generate_TM();}//######################################################################//# Read an FSM specification from a file.//# Format (hopefully will become more flexible in the future...)://# I S O (in the first line)//# blank line//# Next state matrix (S lines, each with I integers separated by spaces)//# blank line//# output symbol matrix (S lines, each with I integers separated by spaces)//# optional comments//######################################################################fsm::fsm(const char *name) {  FILE *fsmfile;  if((fsmfile=fopen(name,"r"))==NULL)     throw std::runtime_error ("fsm::fsm(const char *name): file open error\n");    //printf("file open error in fsm()\n");    fscanf(fsmfile,"%d %d %d\n",&d_I,&d_S,&d_O);  d_NS.resize(d_I*d_S);  d_OS.resize(d_I*d_S);  for(int i=0;i<d_S;i++) {    for(int j=0;j<d_I;j++) fscanf(fsmfile,"%d",&(d_NS[i*d_I+j]));  }  for(int i=0;i<d_S;i++) {    for(int j=0;j<d_I;j++) fscanf(fsmfile,"%d",&(d_OS[i*d_I+j]));  }   generate_PS_PI();  generate_TM();}//######################################################################//# Automatically generate the FSM from the generator matrix//# of a (n,k) binary convolutional code//######################################################################fsm::fsm(int k, int n, const std::vector<int> &G){  // calculate maximum memory requirements for each input stream  std::vector<int> max_mem_x(k,-1);  int max_mem = -1;  for(int i=0;i<k;i++) {    for(int j=0;j<n;j++) {      int mem = -1;      if(G[i*n+j]!=0)        mem=(int)(log(G[i*n+j])/log(2.0));      if(mem>max_mem_x[i])        max_mem_x[i]=mem;      if(mem>max_mem)        max_mem=mem;    }  }  //printf("max_mem_x\n");//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");  // calculate total memory requirements to set S  int sum_max_mem = 0;  for(int i=0;i<k;i++)    sum_max_mem += max_mem_x[i];//printf("sum_max_mem = %d\n",sum_max_mem);  d_I=1<<k;  d_S=1<<sum_max_mem;  d_O=1<<n;   // binary representation of the G matrix  std::vector<std::vector<int> > Gb(k*n);  for(int j=0;j<k*n;j++) {    Gb[j].resize(max_mem+1);    dec2base(G[j],2,Gb[j]);//printf("Gb\n");//for(int m=0;m<Gb[j].size();m++) printf("%d ",Gb[j][m]); printf("\n");  }  // alphabet size of each shift register   std::vector<int> bases_x(k);  for(int j=0;j<k ;j++)     bases_x[j] = 1 << max_mem_x[j];//printf("bases_x\n");//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");  d_NS.resize(d_I*d_S);  d_OS.resize(d_I*d_S);  std::vector<int> sx(k);  std::vector<int> nsx(k);  std::vector<int> tx(k);  std::vector<std::vector<int> > tb(k);  for(int j=0;j<k;j++)    tb[j].resize(max_mem+1);  std::vector<int> inb(k);  std::vector<int> outb(n);  for(int s=0;s<d_S;s++) {    dec2bases(s,bases_x,sx); // split s into k values, each representing on of the k shift registers//printf("state = %d \nstates = ",s);//for(int j=0;j<sx.size();j++) printf("%d ",sx[j]); printf("\n");    for(int i=0;i<d_I;i++) {      dec2base(i,2,inb); // input in binary//printf("input = %d \ninputs = ",i);//for(int j=0;j<inb.size();j++) printf("%d ",inb[j]); printf("\n");      // evaluate next state      for(int j=0;j<k;j++)        nsx[j] = (inb[j]*bases_x[j]+sx[j])/2; // next state (for each shift register) MSB first      d_NS[s*d_I+i]=bases2dec(nsx,bases_x); // collect all values into the new state      // evaluate transitions      for(int j=0;j<k;j++)        tx[j] = inb[j]*bases_x[j]+sx[j]; // transition (for each shift register)MSB first      for(int j=0;j<k;j++) {        dec2base(tx[j],2,tb[j]); // transition in binary//printf("transition = %d \ntransitions = ",tx[j]);//for(int m=0;m<tb[j].size();m++) printf("%d ",tb[j][m]); printf("\n");      }      // evaluate outputs      for(int nn=0;nn<n;nn++) {        outb[nn] = 0;        for(int j=0;j<k;j++) {          for(int m=0;m<max_mem+1;m++)            outb[nn] = (outb[nn] + Gb[j*n+nn][m]*tb[j][m]) % 2; // careful: polynomial 1+D ir represented as 110, not as 011//printf("output %d equals %d\n",nn,outb[nn]);        }      }      d_OS[s*d_I+i] = base2dec(outb,2);    }  }  generate_PS_PI();  generate_TM();}//######################################################################//# Automatically generate an FSM specification describing the //# ISI for a channel//# of length ch_length and a modulation of size mod_size//######################################################################fsm::fsm(int mod_size, int ch_length){  d_I=mod_size;  d_S=(int) (pow(1.0*d_I,1.0*ch_length-1)+0.5);  d_O=d_S*d_I;  d_NS.resize(d_I*d_S);  d_OS.resize(d_I*d_S);  for(int s=0;s<d_S;s++) {    for(int i=0;i<d_I;i++) {       int t=i*d_S+s;      d_NS[s*d_I+i] = t/d_I;      d_OS[s*d_I+i] = t;    }  }   generate_PS_PI();  generate_TM();}//######################################################################//# generate the PS and PI tables for later use//######################################################################void fsm::generate_PS_PI(){  d_PS.resize(d_S);  d_PI.resize(d_S);  for(int i=0;i<d_S;i++) {    d_PS[i].resize(d_I*d_S); // max possible size    d_PI[i].resize(d_I*d_S);    int j=0;    for(int ii=0;ii<d_S;ii++) for(int jj=0;jj<d_I;jj++) {      if(d_NS[ii*d_I+jj]!=i) continue;      d_PS[i][j]=ii;      d_PI[i][j]=jj;      j++;    }    d_PS[i].resize(j);    d_PI[i].resize(j);  }}//######################################################################//# generate the termination matrices TMl and TMi for later use//######################################################################void fsm::generate_TM(){  d_TMi.resize(d_S*d_S);  d_TMl.resize(d_S*d_S);  for(int i=0;i<d_S*d_S;i++) {    d_TMi[i] = -1; // no meaning    d_TMl[i] = d_S; //infinity: you need at most S-1 steps    if (i/d_S == i%d_S)      d_TMl[i] = 0;  }  for(int s=0;s<d_S;s++) {    bool done = false;    int attempts = 0;    while (done == false && attempts < d_S-1) {      done = find_es(s);      attempts ++;    }    if (done == false) {      //throw std::runtime_error ("fsm::generate_TM(): FSM appears to be disconnected\n");      printf("fsm::generate_TM(): FSM appears to be disconnected\n");      printf("state %d cannot be reached from all other states\n",s);    }  }}// find a path from any state to the ending state "es"bool fsm::find_es(int es){  bool done = true;  for(int s=0;s<d_S;s++) {    if(d_TMl[s*d_S+es] < d_S)       continue;    int minl=d_S;    int mini=-1;    for(int i=0;i<d_I;i++) {      if( 1 + d_TMl[d_NS[s*d_I+i]*d_S+es] < minl) {        minl = 1 + d_TMl[d_NS[s*d_I+i]*d_S+es];        mini = i;      }    }    if (mini != -1) {      d_TMl[s*d_S+es]=minl;      d_TMi[s*d_S+es]=mini;    }    else      done = false;  }  return done;}//######################################################################//#  generate trellis representation of FSM as an SVG file//######################################################################void fsm::write_trellis_svg( std::string filename ,int number_stages){   std::ofstream trellis_fname (filename.c_str());   if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);}   const int TRELLIS_Y_OFFSET = 30;   const int TRELLIS_X_OFFSET = 20;   const int STAGE_LABEL_Y_OFFSET = 25;   const int STAGE_LABEL_X_OFFSET = 20;   const int STATE_LABEL_Y_OFFSET = 30;   const int STATE_LABEL_X_OFFSET = 5;   const int STAGE_STATE_OFFSETS = 10;//   std::cout << "################## BEGIN SVG TRELLIS PIC #####################" << std::endl;   trellis_fname << "<svg viewBox = \"0 0 200 200\" version = \"1.1\">" << std::endl;    for( int stage_num = 0;stage_num < number_stages;stage_num ++){    // draw states      for ( int state_num = 0;state_num < d_S ; state_num ++ ) {        trellis_fname << "<circle cx = \"" << stage_num * STAGE_STATE_OFFSETS + TRELLIS_X_OFFSET <<         "\" cy = \"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" r = \"1\"/>" << std::endl;      //draw branches        if(stage_num != number_stages-1){          for( int branch_num = 0;branch_num < d_I; branch_num++){            trellis_fname << "<line x1 =\"" << STAGE_STATE_OFFSETS * stage_num+ TRELLIS_X_OFFSET  << "\" ";            trellis_fname << "y1 =\"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET<< "\" ";            trellis_fname << "x2 =\"" <<  STAGE_STATE_OFFSETS *stage_num + STAGE_STATE_OFFSETS+ TRELLIS_X_OFFSET << "\" ";            trellis_fname << "y2 =\"" << d_NS[d_I * state_num + branch_num] * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" ";            trellis_fname << " stroke-dasharray = \"3," <<  branch_num << "\" ";            trellis_fname << " stroke = \"black\" stroke-width = \"0.3\"/>" << std::endl;          }        }      }    }  // label the stages  trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl;  for( int stage_num = 0;stage_num < number_stages ;stage_num ++){    trellis_fname << "<text x = \"" << stage_num * STAGE_STATE_OFFSETS + STAGE_LABEL_X_OFFSET <<       "\" y = \""  << STAGE_LABEL_Y_OFFSET  << "\" >" << std::endl;    trellis_fname << stage_num <<  std::endl;    trellis_fname << "</text>" << std::endl;  }  trellis_fname << "</g>" << std::endl;  // label the states  trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl;  for( int state_num = 0;state_num < d_S ; state_num ++){    trellis_fname << "<text y = \"" << state_num * STAGE_STATE_OFFSETS + STATE_LABEL_Y_OFFSET <<       "\" x = \""  << STATE_LABEL_X_OFFSET  << "\" >" << std::endl;    trellis_fname << state_num <<  std::endl;    trellis_fname << "</text>" << std::endl;  }  trellis_fname << "</g>" << std::endl;  trellis_fname << "</svg>" << std::endl;//  std::cout << "################## END SVG TRELLIS PIC ##################### " << std::endl;  trellis_fname.close();}//######################################################################//# Write trellis specification to a text files,//# in the same format used when reading FSM files//######################################################################void fsm::write_fsm_txt(std::string filename){   std::ofstream trellis_fname (filename.c_str());   if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);}   trellis_fname << d_I << ' ' << d_S << ' ' << d_O << std::endl;   trellis_fname << std::endl;   for(int i=0;i<d_S;i++) {     for(int j=0;j<d_I;j++)  trellis_fname << d_NS[i*d_I+j] << ' ';     trellis_fname << std::endl;   }   trellis_fname << std::endl;   for(int i=0;i<d_S;i++) {     for(int j=0;j<d_I;j++) trellis_fname << d_OS[i*d_I+j] << ' ';     trellis_fname << std::endl;   }   trellis_fname << std::endl;   trellis_fname.close();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -