⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trellis_siso_combined_f.cc

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 CC
字号:
/* -*- c++ -*- *//* * Copyright 2004 Free Software Foundation, Inc. *  * This file is part of GNU Radio *  * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. *  * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING.  If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */#ifdef HAVE_CONFIG_H#include "config.h"#endif#include <trellis_siso_combined_f.h>#include <gr_io_signature.h>#include <stdexcept>#include <assert.h>#include <iostream>  static const float INF = 1.0e9;trellis_siso_combined_f_sptr trellis_make_siso_combined_f (    const fsm &FSM,    int K,    int S0,    int SK,    bool POSTI,    bool POSTO,    trellis_siso_type_t SISO_TYPE,    int D,    const std::vector<float> &TABLE,    trellis_metric_type_t TYPE){  return trellis_siso_combined_f_sptr (new trellis_siso_combined_f (FSM,K,S0,SK,POSTI,POSTO,SISO_TYPE,D,TABLE,TYPE));}trellis_siso_combined_f::trellis_siso_combined_f (    const fsm &FSM,    int K,    int S0,    int SK,    bool POSTI,    bool POSTO,    trellis_siso_type_t SISO_TYPE,    int D,    const std::vector<float> &TABLE,    trellis_metric_type_t TYPE)  : gr_block ("siso_combined_f",			  gr_make_io_signature (1, -1, sizeof (float)),			  gr_make_io_signature (1, -1, sizeof (float))),    d_FSM (FSM),  d_K (K),  d_S0 (S0),  d_SK (SK),  d_POSTI (POSTI),  d_POSTO (POSTO),  d_SISO_TYPE (SISO_TYPE),  d_D (D),  d_TABLE (TABLE),  d_TYPE (TYPE)//,  //d_alpha(FSM.S()*(K+1)),  //d_beta(FSM.S()*(K+1)){    int multiple;    if (d_POSTI && d_POSTO)         multiple = d_FSM.I()+d_FSM.O();    else if(d_POSTI)        multiple = d_FSM.I();    else if(d_POSTO)        multiple = d_FSM.O();    else        throw std::runtime_error ("Not both POSTI and POSTO can be false.");    //printf("constructor: Multiple = %d\n",multiple);    set_output_multiple (d_K*multiple);    //what is the meaning of relative rate for a block with 2 inputs?    //set_relative_rate ( multiple / ((double) d_FSM.I()) );    // it turns out that the above gives problems in the scheduler, so     // let's try (assumption O>I)    //set_relative_rate ( multiple / ((double) d_FSM.O()) );    // I am tempted to automate like this    if(d_FSM.I() <= d_D)      set_relative_rate ( multiple / ((double) d_D) );    else      set_relative_rate ( multiple / ((double) d_FSM.I()) ); }voidtrellis_siso_combined_f::forecast (int noutput_items, gr_vector_int &ninput_items_required){  int multiple;  if (d_POSTI && d_POSTO)      multiple = d_FSM.I()+d_FSM.O();  else if(d_POSTI)      multiple = d_FSM.I();  else if(d_POSTO)      multiple = d_FSM.O();  else      throw std::runtime_error ("Not both POSTI and POSTO can be false.");  //printf("forecast: Multiple = %d\n",multiple);   assert (noutput_items % (d_K*multiple) == 0);  int input_required1 =  d_FSM.I() * (noutput_items/multiple) ;  int input_required2 =  d_D * (noutput_items/multiple) ;  //printf("forecast: Output requirements:  %d\n",noutput_items);  //printf("forecast: Input requirements:  %d   %d\n",input_required1,input_required2);  unsigned ninputs = ninput_items_required.size();  assert(ninputs % 2 == 0);  for (unsigned int i = 0; i < ninputs/2; i++) {    ninput_items_required[2*i] = input_required1;    ninput_items_required[2*i+1] = input_required2;  }}inline float min(float a, float b){  return a <= b ? a : b;}inline float min_star(float a, float b){  return (a <= b ? a : b)-log(1+exp(a <= b ? a-b : b-a));}void siso_algorithm_combined(int I, int S, int O,              const std::vector<int> &NS,             const std::vector<int> &OS,             const std::vector< std::vector<int> > &PS,             const std::vector< std::vector<int> > &PI,             int K,             int S0,int SK,             bool POSTI, bool POSTO,             float (*p2mymin)(float,float),             int D,             const std::vector<float> &TABLE,             trellis_metric_type_t TYPE,             const float *priori, const float *observations, float *post//,             //std::vector<float> &alpha,             //std::vector<float> &beta             ) {  float norm,mm,minm;  std::vector<float> alpha(S*(K+1));  std::vector<float> beta(S*(K+1));  float *prioro = new float[O*K];  if(S0<0) { // initial state not specified      for(int i=0;i<S;i++) alpha[0*S+i]=0;  }  else {      for(int i=0;i<S;i++) alpha[0*S+i]=INF;      alpha[0*S+S0]=0.0;  }  for(int k=0;k<K;k++) { // forward recursion      calc_metric(O, D, TABLE, &(observations[k*D]), &(prioro[k*O]),TYPE); // calc metrics      norm=INF;      for(int j=0;j<S;j++) {          minm=INF;          for(unsigned int i=0;i<PS[j].size();i++) {              //int i0 = j*I+i;              mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]];              minm=(*p2mymin)(minm,mm);          }          alpha[(k+1)*S+j]=minm;          if(minm<norm) norm=minm;      }      for(int j=0;j<S;j++)           alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode  }  if(SK<0) { // final state not specified      for(int i=0;i<S;i++) beta[K*S+i]=0;  }  else {      for(int i=0;i<S;i++) beta[K*S+i]=INF;      beta[K*S+SK]=0.0;  }  for(int k=K-1;k>=0;k--) { // backward recursion      norm=INF;      for(int j=0;j<S;j++) {           minm=INF;          for(int i=0;i<I;i++) {              int i0 = j*I+i;              mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]];              minm=(*p2mymin)(minm,mm);          }          beta[k*S+j]=minm;          if(minm<norm) norm=minm;      }      for(int j=0;j<S;j++)          beta[k*S+j]-=norm; // normalize total metrics so they do not explode  }  if (POSTI && POSTO)  {    for(int k=0;k<K;k++) { // input combining        norm=INF;        for(int i=0;i<I;i++) {            minm=INF;            for(int j=0;j<S;j++) {                mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]];                minm=(*p2mymin)(minm,mm);            }            post[k*(I+O)+i]=minm;            if(minm<norm) norm=minm;        }        for(int i=0;i<I;i++)            post[k*(I+O)+i]-=norm; // normalize metrics    }    for(int k=0;k<K;k++) { // output combining        norm=INF;        for(int n=0;n<O;n++) {            minm=INF;            for(int j=0;j<S;j++) {                for(int i=0;i<I;i++) {                    mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF);                    minm=(*p2mymin)(minm,mm);                }            }            post[k*(I+O)+I+n]=minm;            if(minm<norm) norm=minm;        }        for(int n=0;n<O;n++)            post[k*(I+O)+I+n]-=norm; // normalize metrics    }  }   else if(POSTI)   {    for(int k=0;k<K;k++) { // input combining        norm=INF;        for(int i=0;i<I;i++) {            minm=INF;            for(int j=0;j<S;j++) {                mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]];                minm=(*p2mymin)(minm,mm);            }            post[k*I+i]=minm;            if(minm<norm) norm=minm;        }        for(int i=0;i<I;i++)            post[k*I+i]-=norm; // normalize metrics    }  }  else if(POSTO)  {    for(int k=0;k<K;k++) { // output combining        norm=INF;        for(int n=0;n<O;n++) {            minm=INF;            for(int j=0;j<S;j++) {                for(int i=0;i<I;i++) {                    mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF);                    minm=(*p2mymin)(minm,mm);                }            }            post[k*O+n]=minm;            if(minm<norm) norm=minm;        }        for(int n=0;n<O;n++)            post[k*O+n]-=norm; // normalize metrics    }  }  else    throw std::runtime_error ("Not both POSTI and POSTO can be false.");  delete [] prioro;}inttrellis_siso_combined_f::general_work (int noutput_items,                        gr_vector_int &ninput_items,                        gr_vector_const_void_star &input_items,                        gr_vector_void_star &output_items){  assert (input_items.size() == 2*output_items.size());  int nstreams = output_items.size();  //printf("general_work:Streams:  %d\n",nstreams);   int multiple;  if (d_POSTI && d_POSTO)      multiple = d_FSM.I()+d_FSM.O();  else if(d_POSTI)      multiple = d_FSM.I();  else if(d_POSTO)      multiple = d_FSM.O();  else      throw std::runtime_error ("Not both POSTI and POSTO can be false.");  assert (noutput_items % (d_K*multiple) == 0);  int nblocks = noutput_items / (d_K*multiple);  //printf("general_work:Blocks:  %d\n",nblocks);   //for(int i=0;i<ninput_items.size();i++)      //printf("general_work:Input items available:  %d\n",ninput_items[i]);  float (*p2min)(float, float) = NULL;   if(d_SISO_TYPE == TRELLIS_MIN_SUM)    p2min = &min;  else if(d_SISO_TYPE == TRELLIS_SUM_PRODUCT)    p2min = &min_star;  for (int m=0;m<nstreams;m++) {    const float *in1 = (const float *) input_items[2*m];    const float *in2 = (const float *) input_items[2*m+1];    float *out = (float *) output_items[m];    for (int n=0;n<nblocks;n++) {      siso_algorithm_combined(d_FSM.I(),d_FSM.S(),d_FSM.O(),        d_FSM.NS(),d_FSM.OS(),d_FSM.PS(),d_FSM.PI(),        d_K,d_S0,d_SK,        d_POSTI,d_POSTO,        p2min,        d_D,d_TABLE,d_TYPE,        &(in1[n*d_K*d_FSM.I()]),&(in2[n*d_K*d_D]),        &(out[n*d_K*multiple])//,        //d_alpha,d_beta        );    }  }  for (unsigned int i = 0; i < input_items.size()/2; i++) {    consume(2*i,d_FSM.I() * noutput_items / multiple );    consume(2*i+1,d_D * noutput_items / multiple );  }  return noutput_items;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -