⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fm_tx_2_daughterboards.py

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 PY
字号:
#!/usr/bin/env python## Copyright 2005,2006,2007 Free Software Foundation, Inc.# # This file is part of GNU Radio# # GNU Radio is free software; you can redistribute it and/or modify# it under the terms of the GNU General Public License as published by# the Free Software Foundation; either version 3, or (at your option)# any later version.# # GNU Radio is distributed in the hope that it will be useful,# but WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the# GNU General Public License for more details.# # You should have received a copy of the GNU General Public License# along with GNU Radio; see the file COPYING.  If not, write to# the Free Software Foundation, Inc., 51 Franklin Street,# Boston, MA 02110-1301, USA.# """Transmit 2 signals, one out each daughterboard.Outputs SSB (USB) signals on side A and side B at frequenciesspecified on command line.Side A is 600 Hz tone.Side B is 350 + 440 Hz tones."""from gnuradio import grfrom gnuradio.eng_notation import num_to_str, str_to_numfrom gnuradio import usrpfrom gnuradio import audiofrom gnuradio import blks2from gnuradio.eng_option import eng_optionfrom optparse import OptionParserfrom usrpm import usrp_dbidimport mathimport sysclass example_signal_0(gr.hier_block2):    """    Sinusoid at 600 Hz.    """    def __init__(self, sample_rate):        gr.hier_block2.__init__(self, "example_signal_0",                                gr.io_signature(0, 0, 0),                    # Input signature                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature        src = gr.sig_source_c (sample_rate,    # sample rate                               gr.GR_SIN_WAVE, # waveform type                               600,            # frequency                               1.0,            # amplitude                               0)              # DC Offset            self.connect(src, self)class example_signal_1(gr.hier_block2):    """    North American dial tone (350 + 440 Hz).    """    def __init__(self, sample_rate):        gr.hier_block2.__init__(self, "example_signal_1",                                gr.io_signature(0, 0, 0),                    # Input signature                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature        src0 = gr.sig_source_c (sample_rate,    # sample rate                                gr.GR_SIN_WAVE, # waveform type                                350,            # frequency                                1.0,            # amplitude                                0)              # DC Offset        src1 = gr.sig_source_c (sample_rate,    # sample rate                                gr.GR_SIN_WAVE, # waveform type                                440,            # frequency                                1.0,            # amplitude                                0)              # DC Offset        sum = gr.add_cc()        self.connect(src0, (sum, 0))        self.connect(src1, (sum, 1))        self.connect(sum, self)class my_top_block(gr.top_block):    def __init__(self):        gr.top_block.__init__(self)        usage="%prog: [options] side-A-tx-freq side-B-tx-freq"        parser = OptionParser (option_class=eng_option, usage=usage)        (options, args) = parser.parse_args ()        if len(args) != 2:            parser.print_help()            raise SystemExit        else:            freq0 = str_to_num(args[0])            freq1 = str_to_num(args[1])        # ----------------------------------------------------------------        # Set up USRP to transmit on both daughterboards        self.u = usrp.sink_c(nchan=2)          # say we want two channels        self.dac_rate = self.u.dac_rate()                    # 128 MS/s        self.usrp_interp = 400        self.u.set_interp_rate(self.usrp_interp)        self.usrp_rate = self.dac_rate / self.usrp_interp    # 320 kS/s        # we're using both daughterboard slots, thus subdev is a 2-tuple        self.subdev = (self.u.db[0][0], self.u.db[1][0])        print "Using TX d'board %s" % (self.subdev[0].side_and_name(),)        print "Using TX d'board %s" % (self.subdev[1].side_and_name(),)                # set up the Tx mux so that        #  channel 0 goes to Slot A I&Q and channel 1 to Slot B I&Q        self.u.set_mux(0xba98)        self.subdev[0].set_gain(self.subdev[0].gain_range()[1])    # set max Tx gain        self.subdev[1].set_gain(self.subdev[1].gain_range()[1])    # set max Tx gain        self.set_freq(0, freq0)        self.set_freq(1, freq1)        self.subdev[0].set_enable(True)             # enable transmitter        self.subdev[1].set_enable(True)             # enable transmitter        # ----------------------------------------------------------------        # build two signal sources, interleave them, amplify and connect them to usrp        sig0 = example_signal_0(self.usrp_rate)        sig1 = example_signal_1(self.usrp_rate)        intl = gr.interleave(gr.sizeof_gr_complex)        self.connect(sig0, (intl, 0))        self.connect(sig1, (intl, 1))        # apply some gain        if_gain = 10000        ifamp = gr.multiply_const_cc(if_gain)                # and wire them up        self.connect(intl, ifamp, self.u)            def set_freq(self, side, target_freq):        """        Set the center frequency we're interested in.        @param side: 0 = side A, 1 = side B        @param target_freq: frequency in Hz        @rtype: bool        Tuning is a two step process.  First we ask the front-end to        tune as close to the desired frequency as it can.  Then we use        the result of that operation and our target_frequency to        determine the value for the digital up converter.        """        print "Tuning side %s to %sHz" % (("A", "B")[side], num_to_str(target_freq))        r = self.u.tune(self.subdev[side]._which, self.subdev[side], target_freq)        if r:            print "  r.baseband_freq =", num_to_str(r.baseband_freq)            print "  r.dxc_freq      =", num_to_str(r.dxc_freq)            print "  r.residual_freq =", num_to_str(r.residual_freq)            print "  r.inverted      =", r.inverted            print "  OK"            return True        else:            print "  Failed!"                    return Falseif __name__ == '__main__':    try:        my_top_block().run()    except KeyboardInterrupt:        pass

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -