⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 usrp_spectrum_sense.py

📁 这是用python语言写的一个数字广播的信号处理工具包。利用它
💻 PY
字号:
#!/usr/bin/env python## Copyright 2005,2007 Free Software Foundation, Inc.# # This file is part of GNU Radio# # GNU Radio is free software; you can redistribute it and/or modify# it under the terms of the GNU General Public License as published by# the Free Software Foundation; either version 3, or (at your option)# any later version.# # GNU Radio is distributed in the hope that it will be useful,# but WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the# GNU General Public License for more details.# # You should have received a copy of the GNU General Public License# along with GNU Radio; see the file COPYING.  If not, write to# the Free Software Foundation, Inc., 51 Franklin Street,# Boston, MA 02110-1301, USA.# from gnuradio import gr, gru, eng_notation, optfir, windowfrom gnuradio import audiofrom gnuradio import usrpfrom gnuradio.eng_option import eng_optionfrom optparse import OptionParserfrom usrpm import usrp_dbidimport sysimport mathimport structclass tune(gr.feval_dd):    """    This class allows C++ code to callback into python.    """    def __init__(self, tb):        gr.feval_dd.__init__(self)        self.tb = tb    def eval(self, ignore):        """        This method is called from gr.bin_statistics_f when it wants to change        the center frequency.  This method tunes the front end to the new center        frequency, and returns the new frequency as its result.        """        try:            # We use this try block so that if something goes wrong from here             # down, at least we'll have a prayer of knowing what went wrong.            # Without this, you get a very mysterious:            #            #   terminate called after throwing an instance of 'Swig::DirectorMethodException'            #   Aborted            #            # message on stderr.  Not exactly helpful ;)            new_freq = self.tb.set_next_freq()            return new_freq        except Exception, e:            print "tune: Exception: ", eclass parse_msg(object):    def __init__(self, msg):        self.center_freq = msg.arg1()        self.vlen = int(msg.arg2())        assert(msg.length() == self.vlen * gr.sizeof_float)        # FIXME consider using Numarray or NumPy vector        t = msg.to_string()        self.raw_data = t        self.data = struct.unpack('%df' % (self.vlen,), t)class my_top_block(gr.top_block):    def __init__(self):        gr.top_block.__init__(self)        usage = "usage: %prog [options] min_freq max_freq"        parser = OptionParser(option_class=eng_option, usage=usage)        parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0,0),                          help="select USRP Rx side A or B (default=A)")        parser.add_option("-g", "--gain", type="eng_float", default=None,                          help="set gain in dB (default is midpoint)")        parser.add_option("", "--tune-delay", type="eng_float", default=1e-3, metavar="SECS",                          help="time to delay (in seconds) after changing frequency [default=%default]")        parser.add_option("", "--dwell-delay", type="eng_float", default=10e-3, metavar="SECS",                          help="time to dwell (in seconds) at a given frequncy [default=%default]")        parser.add_option("-F", "--fft-size", type="int", default=256,                          help="specify number of FFT bins [default=%default]")        parser.add_option("-d", "--decim", type="intx", default=16,                          help="set decimation to DECIM [default=%default]")        parser.add_option("", "--real-time", action="store_true", default=False,                          help="Attempt to enable real-time scheduling")        parser.add_option("-B", "--fusb-block-size", type="int", default=0,                          help="specify fast usb block size [default=%default]")        parser.add_option("-N", "--fusb-nblocks", type="int", default=0,                          help="specify number of fast usb blocks [default=%default]")        (options, args) = parser.parse_args()        if len(args) != 2:            parser.print_help()            sys.exit(1)        self.min_freq = eng_notation.str_to_num(args[0])        self.max_freq = eng_notation.str_to_num(args[1])        if self.min_freq > self.max_freq:            self.min_freq, self.max_freq = self.max_freq, self.min_freq   # swap them	self.fft_size = options.fft_size        if not options.real_time:            realtime = False        else:            # Attempt to enable realtime scheduling            r = gr.enable_realtime_scheduling()            if r == gr.RT_OK:                realtime = True            else:                realtime = False                print "Note: failed to enable realtime scheduling"        # If the user hasn't set the fusb_* parameters on the command line,        # pick some values that will reduce latency.        if 1:            if options.fusb_block_size == 0 and options.fusb_nblocks == 0:                if realtime:                        # be more aggressive                    options.fusb_block_size = gr.prefs().get_long('fusb', 'rt_block_size', 1024)                    options.fusb_nblocks    = gr.prefs().get_long('fusb', 'rt_nblocks', 16)                else:                    options.fusb_block_size = gr.prefs().get_long('fusb', 'block_size', 4096)                    options.fusb_nblocks    = gr.prefs().get_long('fusb', 'nblocks', 16)            #print "fusb_block_size =", options.fusb_block_size	#print "fusb_nblocks    =", options.fusb_nblocks        # build graph                self.u = usrp.source_c(fusb_block_size=options.fusb_block_size,                               fusb_nblocks=options.fusb_nblocks)        adc_rate = self.u.adc_rate()                # 64 MS/s        usrp_decim = options.decim        self.u.set_decim_rate(usrp_decim)        usrp_rate = adc_rate / usrp_decim        self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))        self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)        print "Using RX d'board %s" % (self.subdev.side_and_name(),)	s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)        mywindow = window.blackmanharris(self.fft_size)        fft = gr.fft_vcc(self.fft_size, True, mywindow)        power = 0        for tap in mywindow:            power += tap*tap                    c2mag = gr.complex_to_mag_squared(self.fft_size)        # FIXME the log10 primitive is dog slow        log = gr.nlog10_ff(10, self.fft_size,                           -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size))		        # Set the freq_step to 75% of the actual data throughput.        # This allows us to discard the bins on both ends of the spectrum.        self.freq_step = 0.75 * usrp_rate        self.min_center_freq = self.min_freq + self.freq_step/2        nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step)        self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step)        self.next_freq = self.min_center_freq                tune_delay  = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size)))  # in fft_frames        dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames        self.msgq = gr.msg_queue(16)        self._tune_callback = tune(self)        # hang on to this to keep it from being GC'd        stats = gr.bin_statistics_f(self.fft_size, self.msgq,                                    self._tune_callback, tune_delay, dwell_delay)        # FIXME leave out the log10 until we speed it up	#self.connect(self.u, s2v, fft, c2mag, log, stats)	self.connect(self.u, s2v, fft, c2mag, stats)        if options.gain is None:            # if no gain was specified, use the mid-point in dB            g = self.subdev.gain_range()            options.gain = float(g[0]+g[1])/2        self.set_gain(options.gain)	print "gain =", options.gain    def set_next_freq(self):        target_freq = self.next_freq        self.next_freq = self.next_freq + self.freq_step        if self.next_freq >= self.max_center_freq:            self.next_freq = self.min_center_freq        if not self.set_freq(target_freq):            print "Failed to set frequency to", target_freq        return target_freq                              def set_freq(self, target_freq):        """        Set the center frequency we're interested in.        @param target_freq: frequency in Hz        @rypte: bool        Tuning is a two step process.  First we ask the front-end to        tune as close to the desired frequency as it can.  Then we use        the result of that operation and our target_frequency to        determine the value for the digital down converter.        """        return self.u.tune(0, self.subdev, target_freq)    def set_gain(self, gain):        self.subdev.set_gain(gain)def main_loop(tb):    while 1:        # Get the next message sent from the C++ code (blocking call).        # It contains the center frequency and the mag squared of the fft        m = parse_msg(tb.msgq.delete_head())        # Print center freq so we know that something is happening...        print m.center_freq        # FIXME do something useful with the data...                # m.data are the mag_squared of the fft output (they are in the        # standard order.  I.e., bin 0 == DC.)        # You'll probably want to do the equivalent of "fftshift" on them        # m.raw_data is a string that contains the binary floats.        # You could write this as binary to a file.    if __name__ == '__main__':    tb = my_top_block()    try:        tb.start()              # start executing flow graph in another thread...        main_loop(tb)            except KeyboardInterrupt:        pass

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -