⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bicg.m

📁 Matrix Iteration Methods. Matlab Implementation.
💻 M
字号:
function [x, error, iter, flag] = bicg(A, x, b, M, max_it, tol)%  -- Iterative template routine --%     Univ. of Tennessee and Oak Ridge National Laboratory%     October 1, 1993%     Details of this algorithm are described in "Templates for the%     Solution of Linear Systems: Building Blocks for Iterative%     Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,%     Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,%     1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).%%  [x, error, iter, flag] = bicg(A, x, b, M, max_it, tol)%% bicg.m solves the linear system Ax=b using the % BiConjugate Gradient Method with preconditioning.%% input   A        REAL matrix%         M        REAL preconditioner matrix%         x        REAL initial guess vector%         b        REAL right hand side vector%         max_it   INTEGER maximum number of iterations%         tol      REAL error tolerance%% output  x        REAL solution vector%         error    REAL error norm%         iter     INTEGER number of iterations performed%         flag     INTEGER: 0 = solution found to tolerance%                           1 = no convergence given max_it%                          -1 = breakdown%% Updated August 2006; rbarrett@ornl.gov. (See ChangeLog for details.)% =============================================================================% ----------------%  Initialization.% ----------------  dim  = 0;  iter = 0;  flag = 0;  alpha = 0.0;  beta  = 0.0;  bnrm2 = 0.0;  error = 0.0;  rho   = 0.0;  rho_1 = 0.0;  [dim,dim] = size(A);  r     = zeros(dim,1);  r_tld = zeros(dim,1);  p     = zeros(dim,1);  p_tld = zeros(dim,1);  q     = zeros(dim,1);  z     = zeros(dim,1);  z_tld = zeros(dim,1);  % -----------------------------  % Quick check of approximation.  % -----------------------------  bnrm2 = norm( b );  if  ( bnrm2 == 0.0 ), bnrm2 = 1.0; end  r = b - A*x;  error = norm( r ) / bnrm2;  if ( error < tol ), return, end  r_tld = r;  % ----------------  % Begin iteration.  % ----------------  for iter = 1:max_it     z = M \ r;     z_tld = M' \ r_tld;     rho   = ( z'*r_tld );     if ( rho == 0.0 ),        iter, error, 'rho breakdown'        break     end     % --------------------------     % Compute direction vectors.     % --------------------------     if ( iter > 1 ),        beta = rho / rho_1;        p   = z  + beta*p;        p_tld = z_tld + beta*p_tld;     else        p = z;        p_tld = z_tld;     end     % -----------------------     % Compute  residual pair.     % -----------------------     q = A*p;     q_tld = A'*p_tld;     alpha = rho / (p_tld'*q );     % ---------------------     % Update approximation.     % ---------------------     x = x + alpha*p;     r = r - alpha*q;     r_tld = r_tld - alpha*q_tld;     % ------------------     % Check convergence.     % ------------------     error = norm( r ) / bnrm2;     if ( error <= tol ), break, end     rho_1 = rho;  end  if ( error <= tol ),     % ----------     % Converged.     % ----------     flag =  0;  elseif ( rho == 0.0 ),     % ----------     % Breakdown.     % ----------     flag = -1;  else,     % ---------------     % No convergence.     % ---------------     flag = 1;  end% ----------% End bicg.m% ----------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -