⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cheby.m

📁 Matrix Iteration Methods. Matlab Implementation.
💻 M
字号:
function [x, error, iter, flag] = cheby(A, x, b, M, max_it, tol)%  -- Iterative template routine --%     Univ. of Tennessee and Oak Ridge National Laboratory%     October 1, 1993%     Details of this algorithm are described in "Templates for the%     Solution of Linear Systems: Building Blocks for Iterative%     Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,%     Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,%     1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).%% [x, error, iter, flag] = cheby(A, x, b, M, max_it, tol)%% cheby.m solves the symmetric positive definite linear system Ax=b % using the Chebyshev Method with preconditioning.%% input   A        REAL symmetric positive definite matrix%         x        REAL initial guess vector%         b        REAL right hand side vector%         M        REAL preconditioner matrix%         max_it   INTEGER maximum number of iterations%         tol      REAL error tolerance%% output  x        REAL solution vector%         error    REAL error norm%         iter     INTEGER number of iterations performed%         flag     INTEGER: 0 = solution found to tolerance%                           1 = no convergence given max_it%% Updated August 2006; rbarrett@ornl.gov. (See ChangeLog for details.)%% =============================================================================% ---------------% Initialization.% ---------------  dim  = 0;  flag = 0;  iter = 0;  alpha  = 0.0;  beta   = 0.0;  bnrm2  = 0.0;  c      = 0.0;  d      = 0.0;  eigmax = 0.0;  eigmin = 0.0;  error  = 0.0;  rho    = 0.0;  rho_1  = 0.0;  [dim,dim] = size(A);  eigs  = zeros(dim,1);  p     = zeros(dim,1);  p_tld = zeros(dim,1);  q     = zeros(dim,1);  r     = zeros(dim,1);  r_tld = zeros(dim,1);  z     = zeros(dim,1);  z_tld = zeros(dim,1);  % -----------------------------  % Quick check of approximation.  % -----------------------------  bnrm2 = norm( b );  if  ( bnrm2 == 0.0 ), bnrm2 = 1.0; end  r = b - A*x;  error = norm( r ) / bnrm2;  if ( error < tol ) return, end  % --------------------------------  % Compute max and min eigenvalues.  % --------------------------------  eigs = eig( inv(M)*A );  eigmax = max( eigs );  eigmin = min( eigs );  c = ( eigmax - eigmin ) / 2.0;  d = ( eigmax + eigmin ) / 2.0;  % ----------------  % Begin iteration.  % ----------------  for iter = 1:max_it,    z =  M \ r;     % -------------------------    % Compute direction vector.    % -------------------------    if ( iter > 1 ),       beta = ( c*alpha / 2.0 )^2;       alpha = 1.0 / ( d - beta );       p = z + beta*p;    else       p = z;       alpha = 2.0 / d;    end    % ---------------------    % Update approximation.    % ---------------------    x  = x + alpha*p;    r = r - alpha*A*p;    % ------------------    % Check convergence.    % ------------------    error = norm( r ) / bnrm2;    if ( error <= tol  ), break, end  end  % ------------------------  % Final convergence check.  % ------------------------  if ( error > tol ) flag = 1; end;% -----------% End cheby.m% -----------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -