📄 qmr.m
字号:
function [x, error, iter, flag] = qmr( A, x, b, M, max_it, tol )% -- Iterative template routine --% Univ. of Tennessee and Oak Ridge National Laboratory% October 1, 1993% Details of this algorithm are described in "Templates for the% Solution of Linear Systems: Building Blocks for Iterative% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).%% [x, error, iter, flag] = qmr( A, x, b, M, max_it, tol )%% qmr.m solves the linear system Ax=b using the % Quasi Minimal Residual Method with preconditioning.%% input A REAL matrix% x REAL initial guess vector% b REAL right hand side vector% M REAL preconditioner% max_it INTEGER maximum number of iterations% tol REAL error tolerance%% output x REAL solution vector% error REAL error norm% iter INTEGER number of iterations performed% flag INTEGER: 0: solution found to tolerance% 1: no convergence given max_it% breakdown:% -1: rho% -2: beta% -3: gamma% -4: delta% -5: ep% -6: xi%% Updated August 2006; rbarrett@ornl.gov. (See ChangeLog for details.)%% =============================================================================% ---------------% Initialization.% --------------- dim = 0; flag = 0; iter = 0; beta = 0.0; bnrm2 = 0.0; delta = 0.0; ep = 0.0; error = 0.0; eta = 0.0; gamma = 0.0; gamma_1 = 0.0; rho = 0.0; rho_1 = 0.0; theta = 0.0; theta_1 = 0.0; xi = 0.0; [dim,dim] = size(A); d = zeros(dim,1); p = zeros(dim,1); p_tld = zeros(dim,1); q = zeros(dim,1); r = zeros(dim,1); s = zeros(dim,1); v = zeros(dim,1); v_tld = zeros(dim,1); w = zeros(dim,1); w_tld = zeros(dim,1); y = zeros(dim,1); y_tld = zeros(dim,1); z = zeros(dim,1); z_tld = zeros(dim,1); % ----------------------------- % Quick check of approximation. % ----------------------------- bnrm2 = norm( b ); if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end r = b - A*x; error = norm( r ) / bnrm2; if ( error < tol ) return, end % --------------------------------------------------- % Factor preconditioner into left and right matrices. % --------------------------------------------------- [M1,M2] = lu( M ); v_tld = r; y = M1 \ v_tld; rho = norm( y ); w_tld = r; z = M2' \ w_tld; xi = norm( z ); gamma = 1.0; eta = -1.0; theta = 0.0; % ---------------- % Begin iteration. % ---------------- for iter = 1:max_it, if ( rho == 0.0 | xi == 0.0 ), break, end v = v_tld / rho; y = y / rho; w = w_tld / xi; z = z / xi; delta = z'*y; if ( delta == 0.0 ), break, end y_tld = M2 \ y; z_tld = M1'\ z; % -------------------------- % Compute direction vectors. % -------------------------- if ( iter > 1 ), p = y_tld - ( xi*delta / ep )*p; q = z_tld - ( rho*delta / ep )*q; else p = y_tld; q = z_tld; end % -------------------- % Check for breakdown. % -------------------- p_tld = A*p; ep = q'*p_tld; if ( ep == 0.0 ), break, end beta = ep / delta; if ( beta == 0.0 ), break, end v_tld = p_tld - beta*v; y = M1 \ v_tld; rho_1 = rho; rho = norm( y ); w_tld = ( A'*q ) - ( beta*w ); z = M2' \ w_tld; xi = norm( z ); gamma_1 = gamma; theta_1 = theta; theta = rho / ( gamma_1*beta ); gamma = 1.0 / sqrt( 1.0 + (theta^2) ); if ( gamma == 0.0 ), break, end eta = -eta*rho_1*(gamma^2) / ( beta*(gamma_1^2) ); % --------------------------- % Compute adjustment vectors. % --------------------------- if ( iter > 1 ), d = eta*p + (( theta_1*gamma )^2)*d; s = eta*p_tld + (( theta_1*gamma )^2)*s; else d = eta*p; s = eta*p_tld; end % --------------------- % Update approximation. % --------------------- x = x + d; % ------------------ % Check convergence. % ------------------ r = r - s; error = norm( r ) / bnrm2; if ( error <= tol ), break, end end % --------------------------- % Set iteration outcome flag. % --------------------------- if ( error <= tol ), % converged flag = 0; elseif ( rho == 0.0 ), % breakdown flag = -1; elseif ( beta == 0.0 ), flag = -2; elseif ( gamma == 0.0 ), flag = -3; elseif ( delta == 0.0 ), flag = -4; elseif ( ep == 0.0 ), flag = -5; elseif ( xi == 0.0 ), flag = -6; else % no convergence flag = 1; end% ----------% End qmr.m% ----------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -