📄 floorplan.m
字号:
function [W, H, w, h, x, y] = floorplan(adj_H, adj_V, rho, Amin, l, u )% Computes a minimum-perimeter bounding box subject to positioning constraints%% Inputs:% adj_H,adj_V: adjacency matrices% Amin: minimum spacing: w_i * h_i >= Amin% rho: boundaries: rho <= x_i <= W-rho, rho <= y_i <= H-rho% l, u: aspect ratio constraints: l_i <= h_i/w_i <= u_i% Only adj_H and adj_V are required; the rest are optional. If n is the% number of cells, then adj_H and adj_V must be nxn matrices, and Amin,% l, and u must be vectors of length n. rho must be a scalar. The default% values of rho and Amin are 0.% Joelle Skaf - 12/04/05if nargin < 2 error('Insufficient number of input arguments');end[n1, n2] = size(adj_H);[m1, m2] = size(adj_V);if n1~=n2 error('Input adjacency matrix for horizontal graph must be square');endif m1~=m2 error('Input adjacency matrix for horizontal graph must be square');endif n1~=m1 error('Input adjacency matrices must be of the same size');endn = n1; % number of cellsif nargin <3 rho = 0;endif nargin <4 Amin = zeros(1,n);else if min(size(Amin)) ~=1 error('Amin should be a vector'); end if max(size(Amin)) ~= n error('Amin should have the same length as the input graphs'); end if size(Amin,1)~=1 Amin = Amin'; endendif nargin == 5 if min(size(1)) ~= 1 error('l must be a vector'); end if max(size(l)) ~= n error('the vector l must have same length as the input graphs'); end if size(l,1) == 1 l = l'; endendif nargin == 6 if min(size(1)) ~= 1 error('u must be a vector'); end if max(size(u)) ~= n error('the vector u must have same length as the input graphs'); end if size(u,1) == 1 u = u'; endendif nargin < 6 u = [];endif nargin < 5 l = [];end% verifying that there is a directed path between any pair of cells in at% least one of the 2 graphspaths_H = adj_H;paths_V = adj_V;temp_H = adj_H^2;temp_V = adj_V^2;while (sum(temp_H(:))>0) paths_H = paths_H + temp_H; temp_H = temp_H*adj_H;endwhile (sum(temp_V(:))>0) paths_V = paths_V + temp_V; temp_V = temp_V*adj_V;endhh = paths_H + paths_H';vv = paths_V + paths_V';p = hh+vv+eye(n);all_paths = p>0;if sum(all_paths(:)) ~= n^2 error('There must be a directed graph between every pair of cells in one or the other input graphs');endpar_H = sum(adj_H,2); % number of parents of each node in Hpar_V = sum(adj_V,2); % number of parents of each node in Vchi_H = sum(adj_H); % number of children of each node in Hchi_V = sum(adj_V); % number of children of each node in V% find the root(s) for each treeroots_H = find(par_H==0);roots_V = find(par_V==0);% find all non-root nodes for each treenodes_H = find(par_H>0);nodes_V = find(par_V>0);% find leaf(s) for each treeleafs_H = find(chi_H==0);leafs_V = find(chi_V==0);cvx_quiet(1);cvx_begin variables x(n) y(n) w(n) h(n) W H minimize ( W + H ) w >= 0; h >= 0; x(leafs_H) >= rho; y(leafs_V) >= rho; x(roots_H) + w(roots_H) + rho <= W; y(roots_V) + h(roots_V) + rho <= H; for i=1:length(nodes_H) node = nodes_H(i); c = adj_H(node,:); prnt = find(c>0)'; m = length(prnt); x(node) + w(node) + rho <= x(prnt); end for i=1:length(nodes_V) node = nodes_V(i); c = adj_V(node,:); prnt = find(c>0)'; m = length(prnt); y(node) + h(node) + rho <= y(prnt); end if sum(size(u))~= 0 h <= u.*w; end if sum(size(l))~= 0 h >= l.*w; end w' >= quad_over_lin([Amin.^.5;zeros(1,n)],h');cvx_end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -