📄 ex_5_33.m
字号:
% Exercise 5.33: Parametrized l1-norm approximation% Boyd & Vandenberghe "Convex Optimization"% Jo雔le Skaf - 08/29/05% (a figure is generated)%% Let p_star(epsilon) be the optimal value of the following problem:% minimize ||Ax + b + epsilon*d||_1% Plots p_star(epsilon) versus epsilon and demonstrates the fact that it's% affine on an interval that includes epsilon = 0.cvx_quiet(true);% Input dataA = [-2 7 1; ... -5 -1 3; ... -7 3 -5; ... -1 4 -4; ... 1 5 5; ... 2 -5 -1];b = [-4 3 9 0 -11 5]';d = [-10 -13 -27 -10 -7 14]';epsilon = [-1:0.05:1];p_star = zeros(size(epsilon));fprintf(1,'Computing p*(epsilon) for -1 <= epsilon <= 1 ...');for i=1:length(epsilon) cvx_begin variable x(3); minimize ( norm( A*x + b + epsilon(i)*d, 1) ) cvx_end p_star(i)= cvx_optval;endfprintf(1,'Done! \n');% Plotsplot(epsilon, p_star)line([-.2 -.2], [2 14], 'LineStyle', '--')line([.5 .5], [2 14], 'LineStyle', '--')xlabel('\epsilon');ylabel('p^*(\epsilon)');title('p^*(\epsilon) vs \epsilon');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -