⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ex_5_33.m

📁 凸优化程序包
💻 M
字号:
% Exercise 5.33: Parametrized l1-norm approximation% Boyd & Vandenberghe "Convex Optimization"% Jo雔le Skaf - 08/29/05% (a figure is generated)%% Let p_star(epsilon) be the optimal value of the following problem:%               minimize    ||Ax + b + epsilon*d||_1% Plots p_star(epsilon) versus epsilon and demonstrates the fact that it's% affine on an interval that includes epsilon = 0.cvx_quiet(true);% Input dataA = [-2  7  1; ...     -5 -1  3; ...     -7  3 -5; ...     -1  4 -4; ...      1  5  5; ...      2 -5 -1];b = [-4 3 9 0 -11 5]';d = [-10 -13 -27 -10 -7 14]';epsilon = [-1:0.05:1];p_star = zeros(size(epsilon));fprintf(1,'Computing p*(epsilon) for -1 <= epsilon <= 1 ...');for i=1:length(epsilon)    cvx_begin        variable x(3);        minimize ( norm( A*x + b + epsilon(i)*d, 1) )    cvx_end    p_star(i)= cvx_optval;endfprintf(1,'Done! \n');% Plotsplot(epsilon, p_star)line([-.2 -.2], [2 14], 'LineStyle', '--')line([.5 .5], [2 14], 'LineStyle', '--')xlabel('\epsilon');ylabel('p^*(\epsilon)');title('p^*(\epsilon) vs \epsilon');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -