📄 regressor_cvx.m
字号:
% Example 6.4: Regressor selection problem% Section 6.3.1, Figure 6.7% Original by Lieven Vandenberghe% Adapted for CVX Argyris Zymnis - 10/2005%% Solves% minimize ||A*x-b||_2% subject to card(x) <= k%% where card(x) denotes the number of nonzero elements in x,% by first solving (for some value of alpha close to ||x_ln||_1)% minimize ||A*x-b||_2% subject to ||x||_1 <= alpha%% and iteratively decreasing alpha so as to get card(x) = k% The sparsity pattern is then fixed in A and b and% minimize ||A*x-b||_2%% is solvedclearcvx_quiet(true);rand('state',0);m = 10;n = 20;A = randn(m,n);b = A*[randn(round(m/2),1); zeros(n-round(m/2),1)];b = b + 0.1*norm(b)*randn(m,1);if (1) %%%%%%%%%%%%% tradeoff curve for heuristic%% min. ||Ax-b||_2% s.t. ||x||_1 <= alpharesiduals_heur = [norm(b)];xln = A'*((A*A')\b);lnorm = norm(xln,1);nopts = 100;alphas = linspace(0,lnorm,nopts);residuals_heur = [norm(b)];card_heur = [0];for k=2:(nopts-1) alpha = alphas(k); cvx_begin variable x(n) minimize(norm(A*x-b)) subject to norm(x,1) <= alpha; cvx_end x(find(abs(x) < 1e-3*max(abs(x)))) = 0; ind = find(abs(x)); sparsity = length(ind); fprintf(1,'Current sparsity pattern k = %d \n',sparsity); x = zeros(n,1); x(ind) = A(:,ind)\b; card_heur = [card_heur, sparsity]; residuals_heur = [residuals_heur, norm(A*x-b)];end;obj1 = norm(b)obj2 = [0];i=1;for k=1:m-1 if ~isempty(find(card_heur == k)) obj2(i+1) = k; obj1(i+1) = min(residuals_heur(find(card_heur ==k))); i=i+1; end;end;obj2(i) = m; obj1(i) = 0;end; %%%%%%%%%%%%%%%%%%%% globally optimal tradeoffif (1) %%%%%%%%%%%%%bestx = zeros(n,m);bestres = zeros(1,m);for k=1:m-1 k % enumerate sparsity patterns with exactly k nonzeros bestres(k) = Inf; ind = 1:k nocases = 1; done = 0; while ~done done = 1; for i=0:k-1 if (ind(k-i) < n-i), ind(k-i:k) = ind(k-i)+[1:i+1]; done = 0; break; end; end; if done, break; end; x = zeros(n,1); x(ind) = A(:,ind)\b; if (norm(A*x-b) < bestres(k)), bestres(k) = norm(A*x-b); bestx(:,k) = x; end; nocases = nocases + 1; end; nocases factorial(n)/(factorial(n-k)*factorial(k))end;x = A\b;bestres(m) = norm(A*x-b);bestres = [norm(b) bestres];end; %%%%%%%%%figurehold offobj1dbl =[];obj2dbl =[];for i=1:length(obj1)-1 obj1dbl = [obj1dbl, obj1(i), obj1(i)]; obj2dbl = [obj2dbl, obj2(i), obj2(i+1)];end;obj1dbl = [obj1dbl, obj1(length(obj1))];obj2dbl = [obj2dbl, obj2(length(obj1))];bestobj1 = bestres;bestobj2 = [0:1:m];bestobj1dbl =[];bestobj2dbl =[];for i=1:length(bestobj1)-1 bestobj1dbl = [bestobj1dbl, bestobj1(i), bestobj1(i)]; bestobj2dbl = [bestobj2dbl, bestobj2(i), bestobj2(i+1)];end;bestobj1dbl = [bestobj1dbl, bestobj1(length(bestobj1))];bestobj2dbl = [bestobj2dbl, bestobj2(length(bestobj1))];plot(obj1dbl,obj2dbl,'-', bestobj1dbl, bestobj2dbl,'--');hold onplot(obj1,obj2,'o', bestobj1, bestobj2,'o');axis([0 ceil(2*norm(b))/2 0 m+1])xlabel('x');ylabel('y');hold off%print -deps sparse_regressor_global_helv.eps%save regressor_results
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -