⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 logistics_gp.m

📁 凸优化程序包
💻 M
字号:
% Figure 7.1: Logistic regression (GP version)% Section 7.1.1% Boyd & Vandenberghe, "Convex Optimization"% Kim & Mutapcic, "Logistic regression via geometric programming"% Written for CVX by Almir Mutapcic 02/08/06%% Solves the logistic regression problem re-formulated as a GP.% The original log regression problem is:%%   minimize   sum_i(theta'*x_i) + sum_i( log(1 + exp(-theta'*x_i)) )%% where x are explanatory variables and theta are model parameters.% The equivalent GP is obtained by the following change of variables:% z_i = exp(theta_i). The log regression problem is then a GP:%%   minimize   prod( prod(z_j^x_j) ) * (prod( 1 + prod(z_j^(-x_j)) ))%% with variables z and data x (explanatory variables).randn('state',0);rand('state',0);a =  1;b = -5;m = 100;u = 10*rand(m,1);y = (rand(m,1) < exp(a*u+b)./(1+exp(a*u+b)));% order the observation dataind_false = find( y == 0 );ind_true  = find( y == 1 );% X is the sorted design matrix% first have true than false observations followed by the bias termX = [u(ind_true); u(ind_false)];X = [X ones(size(u,1),1)];[m,n] = size(X);q = length(ind_true);cvx_begin gp  % optimization variables  variables z(n) t(q) s(m)  minimize( prod(t)*prod(s) )  subject to    for k = 1:q      prod( z.^(X(k,:)') ) <= t(k);    end    for k = 1:m      1 + prod( z.^(-X(k,:)') ) <= s(k);    endcvx_end% retrieve the optimal values and plot the resulttheta = log(z);aml = -theta(1);bml = -theta(2);us = linspace(-1,11,1000)';ps = exp(aml*us + bml)./(1+exp(aml*us+bml));plot(us,ps,'-', u(ind_true),y(ind_true),'o', ...                u(ind_false),y(ind_false),'o');axis([-1, 11,-0.1,1.1]);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -