📄 logistics.m
字号:
% Figure 7.1: Logistic regression% Section 7.1.1% Boyd & Vandenberghe, "Convex Optimization"% Original by Lieven Vandenberghe% Adapted for CVX by Argyris Zymnis - 01/31/06%% We consider a binary random variable y with prob(y=1) = p and% prob(y=0) = 1-p. We assume that that y depends on a vector of% explanatory variables u in R^n. The logistic model has the form% p = exp(a'*u+b)/(1+exp(a'*u+b)), where a and b are the model parameters.% We have m data points (u_1,y_1),...,(u_m,y_m).% We can reorder the data so that for u_1,..,u_q the outcome is y = 1% and for u_(q+1),...,u_m the outcome is y = 0. Then it can be shown% that the ML estimate of a and b can be found by solving%% minimize sum_{i=1,..,q}(a'*u_i+b) - sum_i(log(1+exp(a'*u_i+b)))%% In this case we have m = 100 and the u_i are just scalars.% The figure shows the data as well as the function% f(x) = exp(aml*x+bml)/(1+exp(aml*x+bml)) where aml and bml are the% ML estimates of a and b.randn('state',0);rand('state',0);% Generate dataa = 1;b = -5 ;m= 100;u = 10*rand(m,1);y = (rand(m,1) < exp(a*u+b)./(1+exp(a*u+b)));plot(u,y,'o')axis([-1,11,-0.1, 1.1]);% Solve problem%% minimize -(sum_(y_i=1) ui)*a - b + sum log (1+exp(a*ui+b)U = [ones(m,1) u];cvx_begin variables x(2) maximize(y'*U*x-sum(logsumexp([zeros(1,m); x'*U'])))cvx_end% Plot results and logistic functionind1 = find(y==1);ind2 = find(y==0);aml = x(2); bml = x(1);us = linspace(-1,11,1000)';ps = exp(aml*us + bml)./(1+exp(aml*us+bml));dots = plot(us,ps,'-', u(ind1),y(ind1),'o',... u(ind2),y(ind2),'o');axis([-1, 11,-0.1,1.1]);xlabel('x');ylabel('y');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -