📄 evolve_normal_eno1.m
字号:
function [delta, H1_abs, H2_abs] = evolve_normal_ENO1(phi, dx, dy, Vn)
%
% Finds the amount of evolution under a force in
% normal direction and using 1st order accurate ENO scheme
%
% Author: Baris Sumengen sumengen@ece.ucsb.edu
% http://vision.ece.ucsb.edu/~sumengen/
%
delta = zeros(size(phi)+2);
data_ext = zeros(size(phi)+2);
data_ext(2:end-1,2:end-1) = phi;
% Calculate the derivatives (both + and -)
phi_x_minus = zeros(size(phi)+2);
phi_x_plus = zeros(size(phi)+2);
phi_y_minus = zeros(size(phi)+2);
phi_y_plus = zeros(size(phi)+2);
phi_x = zeros(size(phi)+2);
phi_y = zeros(size(phi)+2);
% first scan the rows
for i=1:size(phi,1)
phi_x_minus(i+1,:) = der_ENO1_minus(data_ext(i+1,:), dx);
phi_x_plus(i+1,:) = der_ENO1_plus(data_ext(i+1,:), dx);
phi_x(i+1,:) = select_der_normal(Vn(i+1,:), phi_x_minus(i+1,:), phi_x_plus(i+1,:));
end
% then scan the columns
for j=1:size(phi,2)
phi_y_minus(:,j+1) = der_ENO1_minus(data_ext(:,j+1), dy);
phi_y_plus(:,j+1) = der_ENO1_plus(data_ext(:,j+1), dy);
phi_y(:,j+1) = select_der_normal(Vn(:,j+1), phi_y_minus(:,j+1), phi_y_plus(:,j+1));
end
abs_grad_phi = sqrt(phi_x.^2 + phi_y.^2);
H1_abs = abs(Vn.*phi_x.^2 ./ (abs_grad_phi+dx*dx*(abs_grad_phi == 0)));
H2_abs = abs(Vn.*phi_y.^2 ./ (abs_grad_phi+dx*dx*(abs_grad_phi == 0)));
H1_abs = H1_abs(2:end-1,2:end-1);
H2_abs = H2_abs(2:end-1,2:end-1);
delta = Vn.*abs_grad_phi;
delta = delta(2:end-1,2:end-1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -