📄 gf_laplacexform.c
字号:
switch (Element->ElementSource->Type) { case POINT : Val->Type = VECTOR ; if (Element->Num == Element->ElementSource->Num) { Val->Val[0] = Val->Val[1] = Val->Val[2] = 0. ; GetDP_End ; } xxs = x - Element->ElementSource->x[0] ; yys = y - Element->ElementSource->y[0] ; r2 = SQU(xxs)+SQU(yys) ; if (r2 > EPSILON2) { Val->Val[0] = - ONE_OVER_TWO_PI * xxs / r2 ; Val->Val[1] = - ONE_OVER_TWO_PI * yys / r2 ; Val->Val[2] = 0. ; } else { Val->Val[0] = Val->Val[1] = Val->Val[2] = 0. ; } break ; case TRIANGLE : xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ; xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ; xs[2] = Element->ElementSource->x[2] ; ys[2] = Element->ElementSource->y[2] ; if(xFunctionBF == NULL) { cglt2d_(&x,&y,&xs[0],&xs[1],&xs[2],&ys[0],&ys[1],&ys[2],&valr,&vali); Val->Type = VECTOR ; Val->Val[0] = valr ; Val->Val[1] = vali ; Val->Val[2] = 0. ; } if(xFunctionBF == (CAST)BF_GradNode) { DetJ = (xs[2]-xs[0]) * (ys[1]-ys[0]) - (xs[1]-xs[0]) * (ys[2]-ys[0]) ; switch(NumEntity){ case 1 : mx = (ys[2]-ys[1])/DetJ ; my = (xs[1]-xs[2])/DetJ ; break; case 2 : mx = (ys[0]-ys[2])/DetJ ; my = (xs[2]-xs[0])/DetJ ; break; case 3 : mx = (ys[1]-ys[0])/DetJ ; my = (xs[0]-xs[1])/DetJ ; break; } cglt2d_(&x,&y,&xs[0],&xs[1],&xs[2],&ys[0],&ys[1],&ys[2],&valr,&vali); Val->Type = SCALAR ; Val->Val[0] = my*valr - mx*vali ; } else{ Msg(GERROR, "Unknown Basis Function Type for 'GF_GradLaplacexForm'"); } break ; default : Msg(GERROR, "Unknown Element Type (%s) for 'GF_GradLaplacexForm'", Get_StringForDefine(Element_Type, Element->ElementSource->Type)); } break ; case _3D : switch (Element->ElementSource->Type) { case LINE : Val->Type = VECTOR ; xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ; zs[0] = Element->ElementSource->z[0] ; xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ; zs[1] = Element->ElementSource->z[1] ; a = SQU(xs[0]-xs[1]) + SQU(ys[0]-ys[1]) + SQU(zs[0]-zs[1]) ; b = 2. * ((x-xs[0])*(xs[0]-xs[1]) + (y-ys[0])*(ys[0]-ys[1]) + (z-zs[0])*(zs[0]-zs[1])) ; c = SQU(x-xs[0]) + SQU(y-ys[0]) + SQU(z-zs[0]) + SQU(RADIUS) ; I1 = 2./(4.*a*c-b*b) * ( (2.*a+b)/sqrt(a+b+c) - b/sqrt(c) ) ; I2 = 2./(-4.*a*c+b*b) * ( (2.*c+b)/sqrt(a+b+c) - 2.*sqrt(c) ) ; a2 = sqrt(a) ; Val->Val[0] = ONE_OVER_FOUR_PI * ( (xs[0]-x) * I1 + (xs[1]-xs[0]) * I2 ) * a2 ; Val->Val[1] = ONE_OVER_FOUR_PI * ( (ys[0]-y) * I1 + (ys[1]-ys[0]) * I2 ) * a2 ; Val->Val[2] = ONE_OVER_FOUR_PI * ( (zs[0]-z) * I1 + (zs[1]-zs[0]) * I2 ) * a2 ; break ; case TRIANGLE : Val->Type = VECTOR ; xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ; zs[0] = Element->ElementSource->z[0] ; xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ; zs[1] = Element->ElementSource->z[1] ; xs[2] = Element->ElementSource->x[2] ; ys[2] = Element->ElementSource->y[2] ; zs[2] = Element->ElementSource->z[2] ; if(xFunctionBF == (CAST)BF_Volume) Type_Int = 1 ; if(xFunctionBF == (CAST)BF_Node) Type_Int = 2 ; /* triangle side lengths */ a = sqrt(SQU(xs[1]-xs[0]) + SQU(ys[1]-ys[0]) + SQU(zs[1]-zs[0])); b = sqrt(SQU(xs[2]-xs[1]) + SQU(ys[2]-ys[1]) + SQU(zs[2]-zs[1])); c = sqrt(SQU(xs[2]-xs[0]) + SQU(ys[2]-ys[0]) + SQU(zs[2]-zs[0])); /* local system (u,v,w) centered at (xs[0],ys[0],zs[0]) */ u[0] = (xs[1]-xs[0])/a; u[1] = (ys[1]-ys[0])/a; u[2] = (zs[1]-zs[0])/a; /* triangle normal */ Geo_CreateNormal(Element->ElementSource->Type,xs,ys,zs,n); v[0] = n[1]*u[2]-n[2]*u[1]; v[1] = n[2]*u[0]-n[0]*u[2]; v[2] = n[0]*u[1]-n[1]*u[0]; u2 = (xs[2]-xs[0])*u[0] + (ys[2]-ys[0])*u[1] + (zs[2]-zs[0])*u[2]; /* u2 coordinate */ v2 = (xs[2]-xs[0])*v[0] + (ys[2]-ys[0])*v[1] + (zs[2]-zs[0])*v[2]; /* triangle height, v2 coordinate*/ /* local coordinates of the observation point (xl, yl, zl)*/ xl = u[0] * (x-xs[0]) + u[1] * (y-ys[0]) + u[2] * (z-zs[0]); yl = v[0] * (x-xs[0]) + v[1] * (y-ys[0]) + v[2] * (z-zs[0]); zl = n[0] * (x-xs[0]) + n[1] * (y-ys[0]) + n[2] * (z-zs[0]); area = a * v2/2 ;/* Triangle area */ if (!zl) zl = sqrt(area) * 1e-15 ; s0m = -( (a-xl) * (a-u2) + yl*v2 ) / b; s0p = s0m + b; s1p = ( xl * u2 + yl * v2 ) / c; s1m = s1p - c; s2m = - xl; s2p = a - xl; /* distance observation point projection on triangle plane to triangle local vertices*/ t00 = (yl * (u2-a) + v2 * (a-xl)) / b; t10 = (xl * v2 - yl * u2) / c; t20 = yl; t0m_2 = ((a-xl)*(a-xl) + yl*yl); t0p_2 = ((u2-xl)*(u2-xl) + (v2-yl)*(v2-yl)); t1p_2 = (xl*xl + yl*yl); /* minimum distances^2 from the observation point to each triangle side*/ zl_2 = SQU(zl) ; r00_2 = SQU(t00) + zl_2 ; r10_2 = SQU(t10) + zl_2 ; r20_2 = SQU(t20) + zl_2 ; r00 = sqrt(r00_2); r10 = sqrt(r10_2); r20 = sqrt(r20_2); /* distances from observation point to the vertices*/ r0p = sqrt(t0p_2 + zl_2); r0m = sqrt(t0m_2 + zl_2); r1p = sqrt(t1p_2 + zl_2); EPS = EPSILON*(fabs(s0m)+fabs(s0p)); B0 = (r00 <= EPS) ? 0. : atan(t00*s0p/(r00_2+fabs(zl)*r0p))-atan(t00*s0m/(r00_2+fabs(zl)*r0m)); f20 = ((r0m + s0m) <= EPS) ? log(s0m/s0p) : log((r0p + s0p) / (r0m + s0m)) ; EPS = EPSILON*(fabs(s1m)+fabs(s1p)) ; B1 = (r10 <=EPS) ? 0. : atan(t10*s1p/(r10_2+fabs(zl)*r1p))-atan(t10*s1m/(r10_2+fabs(zl)*r0p)); f21 = ((r0p + s1m)<=EPS) ? log(s1m/s1p) : log((r1p + s1p) / (r0p + s1m)); EPS = EPSILON*(fabs(s2m)+fabs(s2p)) ; B2 = (r20 <= EPS) ? 0. : atan(t20*s2p/(r20_2+fabs(zl)*r0m))-atan(t20*s2m/(r20_2+fabs(zl)*r1p)); f22 = ((r1p + s2m)< EPS) ? log(s2m/s2p): log((r0m + s2p) / (r1p + s2m)); B = B0 + B1 + B2 ; s0[0] = (xs[2] - xs[1])/b ; s0[1] = (ys[2] - ys[1])/b ; s0[2] = (zs[2] - zs[1])/b ; s1[0] = (xs[0] - xs[2])/c ; s1[1] = (ys[0] - ys[2])/c ; s1[2] = (zs[0] - zs[2])/c ; m0[0] = s0[1] * n[2] - s0[2]* n[1] ; m0[1] = s0[2] * n[0] - s0[0]* n[2] ; m0[2] = s0[0] * n[1] - s0[1]* n[0] ; m1[0] = s1[1]* n[2] - s1[2] * n[1] ; m1[1] = s1[2]* n[0] - s1[0] * n[2] ; m1[2] = s1[0]* n[1] - s1[1] * n[0] ; m2[0] = u[1] * n[2] - u[2]* n[1] ; m2[1] = u[2] * n[0] - u[0]* n[2] ; m2[2] = u[0] * n[1] - u[1]* n[0] ; /* Grad(1/r) integral solution*/ I[0] = -n[0] * THESIGN(zl) * B - (m0[0]*f20 + m1[0]*f21 + m2[0]*f22) ; I[1] = -n[1] * THESIGN(zl) * B - (m0[1]*f20 + m1[1]*f21 + m2[1]*f22) ; I[2] = -n[2] * THESIGN(zl) * B - (m0[2]*f20 + m1[2]*f21 + m2[2]*f22) ; switch ( Type_Int ){ case 1 : /* BF_Volume */ Val->Val[0] = I[0]/area ; Val->Val[1] = I[1]/area ; Val->Val[2] = I[2]/area ; break; case 2 : /* BF_Node */ if (!v2 ) Msg(GERROR,"1/0 in GF_LaplacexForm (case _3D TRIANGLE) v2 %e", v2); f0[0] = s0[0] * t00 * f20 - m0[0]*(r0p-r0m) ; /* fi */ f0[1] = s0[1] * t00 * f20 - m0[1]*(r0p-r0m) ; f0[2] = s0[2] * t00 * f20 - m0[2]*(r0p-r0m) ; f1[0] = s1[0] * t10 * f21 - m1[0]*(r1p-r0p) ; f1[1] = s1[1] * t10 * f21 - m1[1]*(r1p-r0p) ; f1[2] = s1[2] * t10 * f21 - m1[2]*(r1p-r0p) ; f2[0] = u[0] * t20 * f22 - m2[0]*(r0m-r1p) ; f2[1] = u[1] * t20 * f22 - m2[1]*(r0m-r1p) ; f2[2] = u[2] * t20 * f22 - m2[2]*(r0m-r1p) ; umf2i = u[0]*(m0[0]*f20 + m1[0]*f21 + m2[0]*f22) + u[1]*(m0[1]*f20 + m1[1]*f21 + m2[1]*f22) + u[2]*(m0[2]*f20 + m1[2]*f21 + m2[2]*f22) ; us0 = u[0] * s0[0] + u[1] * s0[1] + u[2] * s0[2] ; us1 = u[0] * s1[0] + u[1] * s1[1] + u[2] * s1[2] ; us2 = u[0] * u[0] + u[1] * u[1] + u[2] * u[2] ; vmf2i = v[0]*(m0[0]*f20 + m1[0]*f21 + m2[0]*f22) + v[1]*(m0[1]*f20 + m1[1]*f21 + m2[1]*f22) + v[2]*(m0[2]*f20 + m1[2]*f21 + m2[2]*f22) ; vs0 = v[0] * s0[0] + v[1] * s0[1] + v[2] * s0[2] ; vs1 = v[0] * s1[0] + v[1] * s1[1] + v[2] * s1[2] ; vs2 = v[0] * u[0] + v[1] * u[1] + v[2] * u[2] ; B *= fabs(zl); umf2i *= zl ; vmf2i *= zl ; Iua[0] = n[0] * umf2i - B * u[0] + f0[0] * us0 + f1[0] * us1 + f2[0] * us2 ; Iua[1] = n[1] * umf2i - B * u[1] + f0[1] * us0 + f1[1] * us1 + f2[1] * us2 ; Iua[2] = n[2] * umf2i - B * u[2] + f0[2] * us0 + f1[2] * us1 + f2[2] * us2 ; Iva[0] = n[0] * vmf2i - B * v[0] + f0[0] * vs0 + f1[0] * vs1 + f2[0] * vs2 ; Iva[1] = n[1] * vmf2i - B * v[1] + f0[1] * vs0 + f1[1] * vs1 + f2[1] * vs2 ; Iva[2] = n[2] * vmf2i - B * v[2] + f0[2] * vs0 + f1[2] * vs1 + f2[2] * vs2 ; switch(NumEntity){ case 1 : N10 = 1 - xl/a + (u2/a -1) * yl/v2 ; Val->Val[0] = N10 * I[0] - Iua[0]/a + (u2/a-1) * Iva[0]/v2 ; Val->Val[1] = N10 * I[1] - Iua[1]/a + (u2/a-1) * Iva[1]/v2 ; Val->Val[2] = N10 * I[2] - Iua[2]/a + (u2/a-1) * Iva[2]/v2 ; break; case 2 : N20 = xl/a - u2/a * yl/v2 ; Val->Val[0] = N20 * I[0] + Iua[0]/a - u2/a * Iva[0]/v2 ; Val->Val[1] = N20 * I[1] + Iua[1]/a - u2/a * Iva[1]/v2 ; Val->Val[2] = N20 * I[2] + Iua[2]/a - u2/a * Iva[2]/v2 ; break; case 3 : N30 = yl/v2 ; Val->Val[0] = N30 * I[0] + Iva[0]/v2 ; Val->Val[1] = N30 * I[1] + Iva[1]/v2 ; Val->Val[2] = N30 * I[2] + Iva[2]/v2 ; break; } break; } Val->Val[0] *= ONE_OVER_FOUR_PI ; Val->Val[1] *= ONE_OVER_FOUR_PI ; Val->Val[2] *= ONE_OVER_FOUR_PI ; break ; default : Msg(GERROR, "Unknown Element Type (%s) for 'GF_GradLaplacexForm'", Get_StringForDefine(Element_Type, Element->ElementSource->Type)); } break ; default : Msg(GERROR, "Unknown Dimension (%d) for 'GF_GradLaplacexForm'", (int)Fct->Para[0]); } GetDP_End ;}/* ------------------------------------------------------------------------ *//* G F _ N P x G r a d L a p l a c e x F o r m *//* ------------------------------------------------------------------------ */void GF_NPxGradLaplacexForm (F_ARG2) { double xs[MAX_NODES], ys[MAX_NODES] ; double xp[MAX_NODES], yp[MAX_NODES], N[3] ; int Type_Int; double a, b, c, d, m, n, Jp, i1, Is, I1=0 ; struct Value ValGrad ; GetDP_Begin("GF_NPxGradLaplacexForm"); Val->Type = SCALAR ; Val->Val[MAX_DIM] = 0.0 ; if (Element->Num == Element->ElementSource->Num) { Val->Val[0] = 0.0 ; GetDP_End ; } switch ((int)Fct->Para[0]) { case _2D : switch (Element->ElementSource->Type) { case LINE : if (Element->Type != LINE) Msg(GERROR, "GF_NPxGradLaplacexForm not ready for mixed geometrical elements"); xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ; xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ; if(xFunctionBF == (CAST)BF_Volume) { if ((x == xs[0]) && (y == ys[0])) Type_Int = 1 ; else if ((x == xs[1]) && (y == ys[1])) Type_Int = 2 ; else Type_Int = 3 ; xp[0] = Element->x[0] ; yp[0] = Element->y[0] ; xp[1] = Element->x[1] ; yp[1] = Element->y[1] ; a = SQU(xs[0]-xs[1]) + SQU(ys[0]-ys[1]) ; b = 2. * ((x-xs[0]) * (xs[0]-xs[1]) + (y-ys[0]) * (ys[0]-ys[1])) ; c = SQU(x-xs[0]) + SQU(y-ys[0]) ; d = 4.*a*c - b*b ; switch (Type_Int) { case 1 : case 2 : Msg(GERROR, "Degenerate case not done in 'GF_NPxGradLaplacexForm'"); break ; case 3 : if (fabs(d) < EPSILON2) { I1 = 0.0 ; } else { if(d<0) Msg(GERROR, "Unexpected value in 'GF_NPxGradLaplacexForm'"); i1 = sqrt(d) ; Is = 2. / i1 * (atan((2.*a+b)/i1) - atan(b/i1)) ; Jp = sqrt(SQU(xp[0]-xp[1])+SQU(yp[0]-yp[1])) ; m = ((ys[0]-ys[1]) * (xp[0]-xp[1]) + (xs[0]-xs[1]) * (yp[1]-yp[0])) / Jp ; n = ((yp[1]-yp[0]) * (x-xs[0]) + (xp[0]-xp[1]) * (y-ys[0])) / Jp ; I1 = m /(2.*a) * log((a+b)/c+1.) + (n - m*b/(2.*a)) * Is ; } break ; } Val->Val[0] = - ONE_OVER_TWO_PI * I1 ; } else { Msg(GERROR, "Unknown Basis Function Type for 'GF_NPxGradLaplacexForm'"); } break ; default : Msg(GERROR, "Unknown Element Type (%s) for 'GF_NPxGradLaplacexForm'", Get_StringForDefine(Element_Type, Element->ElementSource->Type)); } break ; case _3D: switch (Element->ElementSource->Type) { case TRIANGLE : Geo_CreateNormal(Element->Type, Element->x,Element->y,Element->z, N); GF_GradLaplacexForm(Element, Fct, xFunctionBF, NumEntity, x, y, z, &ValGrad) ; Val->Val[0] = N[0]*ValGrad.Val[0] + N[1]*ValGrad.Val[1] + N[2]*ValGrad.Val[2] ; break ; default : Msg(GERROR, "Unknown Element Type (%s) for 'GF_NPxGradLaplacexForm'", Get_StringForDefine(Element_Type, Element->ElementSource->Type)); } break ; default : Msg(GERROR, "Unknown Dimension (%d) for 'GF_NPxGradLaplacexForm'", (int)Fct->Para[0]); } GetDP_End ;}/* ------------------------------------------------------------------------ *//* G F _ N S x G r a d L a p l a c e x F o r m *//* ------------------------------------------------------------------------ */void GF_NSxGradLaplacexForm (F_ARG2) { GetDP_Begin("GF_NSxGradLaplacexForm"); Msg(GERROR, "Not done: 'GF_NSxGradLaplacexForm'"); GetDP_End ;}/* ------------------------------------------------------------------------ *//* G F _ A p p r o x i m a t e L a p l a c e x F o r m *//* ------------------------------------------------------------------------ */void GF_ApproximateLaplacexForm (F_ARG2) { GetDP_Begin("GF_ApproxilateLaplacexForm"); switch ((int)Fct->Para[1]) { case 0 : GF_LaplacexForm(Element, Fct, (CAST)BF_Volume, 1, x, y, z, Val); break ; default : Msg(GERROR, "Bad Parameter Value in 'GF_ApproximateLaplacexForm'"); break; } GetDP_End ;}#undef F_ARG2#undef CAST
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -