⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cal_analyticintegration.c

📁 cfd求解器使用与gmsh网格的求解
💻 C
字号:
#define RCSID "$Id: Cal_AnalyticIntegration.c,v 1.11 2006/02/26 00:42:54 geuzaine Exp $"/* * Copyright (C) 1997-2006 P. Dular, C. Geuzaine * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. * * Please report all bugs and problems to <getdp@geuz.org>. */#include "GetDP.h"#include "Treatment_Formulation.h"#include "BF_Function.h"/* ------------------------------------------------------------------------ *//*  C a l _ A n a l y t i c I n t e g r a t i o n                           *//* ------------------------------------------------------------------------ */double  Cal_AnalyticIntegration(struct Element * E,				void (*BFEqu)(), void (*BFDof)(),				int i, int j, double (*Cal_Productx)() ) {  double DetJ ;  GetDP_Begin("Cal_AnalyticalIntegration");  if ((E->Type != TRIANGLE) ||      (BFEqu != (void (*)())BF_GradNode) || (BFDof != (void (*)())BF_GradNode) ) {    Msg(GERROR, "Unknown analytic method for integration") ;    GetDP_Return(0.) ;  }  DetJ = (E->x[2] - E->x[0]) * (E->y[1] - E->y[0]) -         (E->x[1] - E->x[0]) * (E->y[2] - E->y[0]) ;    switch (i) {  case 0 :    switch (j) {    case 0 :      GetDP_Return( ((E->y[2]-E->y[1])*(E->y[2]-E->y[1]) + 	      (E->x[1]-E->x[2])*(E->x[1]-E->x[2])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    case 1 :      GetDP_Return( ((E->y[2]-E->y[1])*(E->y[0]-E->y[2]) + 	      (E->x[1]-E->x[2])*(E->x[2]-E->x[0])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    case 2 :      GetDP_Return( ((E->y[2]-E->y[1])*(E->y[1]-E->y[0]) + 	      (E->x[1]-E->x[2])*(E->x[0]-E->x[1])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    default :      Msg(GERROR, "Something wrong in Cal_AnalyticIntegration");      GetDP_Return(0.) ;    }      case 1 :    switch (j) {    case 0 :      GetDP_Return( ((E->y[2]-E->y[1])*(E->y[0]-E->y[2]) + 	      (E->x[1]-E->x[2])*(E->x[2]-E->x[0])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    case 1 :      GetDP_Return( ((E->y[0]-E->y[2])*(E->y[0]-E->y[2]) + 	      (E->x[2]-E->x[0])*(E->x[2]-E->x[0])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    case 2 :      GetDP_Return( ((E->y[0]-E->y[2])*(E->y[1]-E->y[0]) + 	      (E->x[2]-E->x[0])*(E->x[0]-E->x[1])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    default :      Msg(GERROR, "Something wrong in Cal_AnalyticIntegration");      GetDP_Return(0.) ;    }      case 2 :    switch (j) {    case 0 :      GetDP_Return( ((E->y[2]-E->y[1])*(E->y[1]-E->y[0]) + 	      (E->x[1]-E->x[2])*(E->x[0]-E->x[1])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    case 1 :      GetDP_Return( ((E->y[0]-E->y[2])*(E->y[1]-E->y[0]) + 	      (E->x[2]-E->x[0])*(E->x[0]-E->x[1])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    case 2 :      GetDP_Return( ((E->y[1]-E->y[0])*(E->y[1]-E->y[0]) + 	      (E->x[0]-E->x[1])*(E->x[0]-E->x[1])) * fabs(DetJ)	/ (2. * DetJ * DetJ) ) ;    default :      Msg(GERROR, "Something wrong in Cal_AnalyticIntegration");      GetDP_Return(0.);    }  default :    Msg(GERROR, "Something wrong in Cal_AnalyticIntegration");    GetDP_Return(0.) ;      }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -